
LECTURE NOTES

ON

DATA STURCTURES

ACADEMIC YEAR 2021-22

I B.Tech –II SEMESTER (R20)

M.V.Ramana ,Associate Professor

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

V S M COLLEGE OF ENGINEERING

RAMCHANDRAPURAM

E.G DISTRICT - 533255

VSM COLLEGE OF ENGINEERING
RAMACHANDRAPRUM-533255

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

Course Title Year-Sem Branch
Contact

Periods/Week
Sections

Data Structures 1-2 Computer Science and

Engineering

5 -

C OURSE OUTCOMES: After completing this course a student will be able to:

 Summarize the properties, interfaces, and behaviors of basic abstract data types

 Discuss the computational efficiency of the principal algorithms for sorting & searching

 Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing programs

 Demonstrate different methods for traversing trees

Uni

t/

ite

m

No.

Outcomes

Topic

Number

of

periods

Total

perio

ds

Book

Refere

nce

Delivery

Method

1

CO 2: Discuss the

computational

efficiency of the

principal algorithms for

sorting & searching

Data Structures, Sorting and
Searching

 16

T1,T

2, R1

Chalk &

Talk

1.1 Data Structures - Definition,
Classification of Data Structures

2

1.2 Operations on Data Structures,

Abstract Data Type (ADT)
2

1.3 Preliminaries of algorithms. Time

and Space complexity
2

1.4 Linear search, Binary search
1

1.5 Fibonacci search 1

1.6 Insertion sort, Selection sort
2

1.7 Bubble sort, quick sort 2

1.8 Problems on above topics 2
1.9 Radix Sort and Merge Sort 2

2

CO 3: Use arrays,

records, linked

structures, stacks,

queues, trees, and

Graphs in writing

programs

 Linked List

14

T1,T2,

R1

Chalk &

Talk

2.1 Introduction, Single linked list,
Representation of Linked list

1

2.2 Operations on Single Linked list-

Insertion, Deletion, Search and

Traversal

2

2.3 Reversing Single Linked list,

Applications on SLL

1

2.4 Polynomial Expression

Representation

2

2.5 Addition of Polynomials 1
2.6 Multiplication of Polynomials 1
2.7 Sparse Matrix Representation 1
2.8 Advantages and Disadvantages of 1

Single Linked list

2.9 Double Linked list-Insertion,

Deletion, Circular Linked list-

Insertion, Deletion

4

3

CO 3: Use arrays,

records, linked

structures, stacks,

queues, trees, and

Graphs in writing

programs

Stacks and Queues

14

T1,T2,

R2

 Chalk &

Talk

3.1 Introduction to Queues,

Representation of Queues-using

Arrays and using Linked list

2

3.2 Implementation of Queues-using
Arrays

1

3.3 Implementation of Queues-using
Linked List

1

3.4 Application of Queues Circular

Queues, Deques, Priority Queues,
Multiple Queues

2

3.5 Introduction to Stacks, Array

Representation of Stacks
1

3.6 Operations on Stacks, Linked list

Representation of Stacks
2

3.7 Operations on Linked Stack,

Applications
2

3.8 Infix to Postfix Conversion,

Evaluating Postfix Expressions
3

4

CO4: Demonstrate

different methods for

traversing trees

Trees

10

T1, R1

 Chalk &

Talk,ppt

4.1 Basic Terminology in Trees 1

4.2

 Binary Trees Properties,

Representation of Binary Trees using

Arrays and Linked lists

2

4.3 Binary Search Trees- Basic Concepts,

BST Operations: Insertion, Deletion,

Tree Traversals

3

4.4 Heap Tree and Heap Sort 2

4.5 Balanced Binary Trees- AVL Trees,

Insertion, Deletion and Rotations
2

5

CO 3: Use arrays,

records, linked

structures, stacks,

queues, trees, and

Graphs in writing

programs

Graphs

6

T3, R7

Chalk &

Talk

5.1 Basic Concepts, Representations of
Graphs

1

5.2

 Graph Traversals (BFT & DFT) 1

5.3 Applications- Minimum Spanning

Tree Using Prims & Kruskals
Algorithm

1

5.4 Dijkstra’s shortest path 1

5.5 Transitive closure, Warshall’s

Algorithm
2

 TOTAL 60

LIST OF TEXT BOOKS AND AUTHORS
Text Books:

1)Data Structures Using C. 2nd Edition.Reema Thareja, Oxford.
2) Data Structures and algorithm analysis in C, 2nded, Mark Allen Weiss.

Reference Books:
1) Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities Press. 2) Data Structures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A. Forouzon, Cengage. 3) Data Structures with C, Seymour Lipschutz. TMH

Facuty Member bepartmemr PRINCIRAL

R-20 Syllabus for CSE, JNTUK w. e. f. 2020 – 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year – II Semester
 L T P C

3 0 0 3

DATA STRUCTURES

Course Objectives:

The objective of the course is to

 Introduce the fundamental concept of data structures and abstract data types

 Emphasize the importance of data structures in developing and implementing efficient

algorithms

 Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are

represented in memory and used by algorithms

Course Outcomes:

After completing this course a student will be able to:

 Summarize the properties, interfaces, and behaviors of basic abstract data types

 Discuss the computational efficiency of the principal algorithms for sorting &

searching

 Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing
programs

 Demonstrate different methods for traversing trees

UNIT I

Data Structures - Definition, Classification of Data Structures, Operations on Data Structures,

Abstract Data Type (ADT), Preliminaries of algorithms. Time and Space complexity.

Searching - Linear search, Binary search, Fibonacci search.

Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix

sort), merging (Merge sort) algorithms.

UNIT II

Linked List: Introduction, Single linked list, Representation of Linked list in memory,

Operations on Single Linked list-Insertion, Deletion, Search and Traversal ,Reversing Single

Linked list, Applications on Single Linked list- Polynomial Expression Representation

,Addition and Multiplication, Sparse Matrix Representation using Linked List, Advantages

and Disadvantages of Single Linked list, Double Linked list-Insertion, Deletion, Circular

Linked list-Insertion, Deletion.

UNIT III

Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked

list, Implementation of Queues-using Arrays and using Linked list, Application of Queues-

Circular Queues, Deques, Priority Queues, Multiple Queues.

Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked

list Representation of Stacks, Operations on Linked Stack, Applications-Reversing list,

Factorial Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.

UNIT IV

Trees: Basic Terminology in Trees, Binary Trees-Properties, Representation of Binary Trees

using Arrays and Linked lists. Binary Search Trees- Basic Concepts, BST Operations:

Insertion, Deletion, Tree Traversals, Applications-Expression Trees, Heap Sort, Balanced

Binary Trees- AVL Trees, Insertion, Deletion and Rotations.

R-20 Syllabus for CSE, JNTUK w. e. f. 2020 – 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT V

Graphs: Basic Concepts, Representations of Graphs-Adjacency Matrix and using Linked list,

Graph Traversals (BFT & DFT), Applications- Minimum Spanning Tree Using Prims &

Kruskals Algorithm, Dijkstra’s shortest path, Transitive closure, Warshall’s Algorithm.

Text Books:

1) Data Structures Using C. 2nd Edition.Reema Thareja, Oxford.

2) Data Structures and algorithm analysis in C, 2nded, Mark Allen Weiss.

Reference Books:

1) Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities

Press.

2) Data Structures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A.

Forouzon, Cengage.

3) Data Structures with C, Seymour Lipschutz TMH

e-Resources:

1) http://algs4.cs.princeton.edu/home/

2) https://faculty.washington.edu/jstraub/dsa/Master_2_7a.pdf

http://algs4.cs.princeton.edu/home/

` 1

Unit – I

Syllabus:

• Data Structures - Definition, Classification of Data Structures, Operations on Data Structures, Abstract

Data Type (ADT), Preliminaries of algorithms. Time and Space complexity.

• Searching - Linear search, Binary search, Fibonacci search.

• Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix sort), merging

(Merge sort) algorithms.

 A data structure is a particular way of storing and organizing data in a computer so that it can be

used efficiently.

 Some common examples of data structures are arrays, linked lists, queues, stacks, binary trees,

and hash tables

 Today computer programmers do not write programs just to solve a problem but to write an

efficient program.

 When selecting a data structure to solve a problem, the following steps must be performed.

1. Analysis of the problem to determine the basic operations that must be supported.

2. Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

 The term data means a value or set of values. It specifies either the value of a variable or a constant

(e.g., marks of students, name of an employee, address of a customer, value of pi, etc.).

 A record is a collection of data items. For example, the name, address, course, and marks obtained

are individual data items. But all these data items can be grouped together to form a record.

 A file is a collection of related records. For example, if there are 60 students in a class, then there

are 60 records of the students. All these related records are stored in a file.

 Data structures are generally categorized into two classes: primitive and non-primitive data

structures.

Primitive and Non-primitive Data Structures:

 Primitive data structures are the fundamental

data types which are supported by a

programming language. Some basic data types

are integer, real, character, and boolean. The

terms ‘data type, basic data type’, and ‘primitive

data type’ are often used interchangeably.

INTRODUCTION:

CLASSIFICATION OF DATA STRUCTURES:

` 2

 Non-primitive data structures are those data structures which are created using primitive data

structures. Examples of such data structures include linked lists, stacks, trees, and graphs.

 Non-primitive data structures can further be classified into two categories: linear and non-linear

data structures.

Linear and Non-linear Structures:

 If the elements of a data structure are stored in a linear or sequential order, then it is a linear data

structure.

o Examples include arrays, linked lists, stacks, and queues.

o Linear data structures can be represented in memory in two different ways. One way is to

have to a linear relationship between elements by means of sequential memory locations.

The other way is to have a linear relationship between elements by means of links.

 If the elements of a data structure are not stored in a sequential order, then it is a non-linear data

structure.

o The relationship of adjacency is not maintained between elements of a non-linear data

structure. Examples include trees and graphs.

Arrays:

 An array is a collection of similar data elements. These data elements have the same data type.

The elements of the array are stored in consecutive memory locations and are referenced by an

index (also known as the subscript).

 In C, arrays are declared using the following syntax: datatype name[size];

Ex: int marks[10];

limitations:

o Arrays are of fixed size.

o Data elements are stored in contiguous memory locations which may not be always available.

o Insertion and deletion of elements can be problematic because of shifting of elements from their

positions.

` 3

Linked Lists:

 linked list is a dynamic data structure in which elements (called nodes) form a sequential list.

 In a linked list, each node is allocated space as it is added to the list. Every node in the list points

to the next node in the list.

 Every node contains the following

The value of the node or any other data that corresponds to that node

A pointer or link to the next node in the list

 The first node in the list is pointed by Head/Start/First. The last node in the list contains a NULL

pointer to indicate that it is the end or tail of the list.

Advantage: Easier to insert or delete data elements

Disadvantage: Slow search operation and requires more memory space

Stacks:

 A stack is a linear data structure in which insertion and deletion of elements are done at only one

end, which is known as the top of the stack.

 Stack is called a last-in, first-out (LIFO)

structure because the last element which is

added to the stack is the first element which

is deleted from the stack.

 Stacks can be implemented using arrays or

linked lists.

 Every stack has a variable top associated

with it. Top is used to store the address of

the topmost element of the stack.

 It is this position fromwhere the element will be added or deleted. There is another variable MAX,

which is used to store the maximum number of elements that the stack can store.

 If top = NULL, then it indicates that the stack is empty and if top = MAX–1, then the stack is full.

 A stack supports three basic operations: push, pop, and peep. The push operation adds an element

to the top of the stack. The pop operation removes the element from the top of the stack. And the

peep operation returns the value of the topmost element of the stack (without deleting it).

` 4

Queues:

 A Queue is a linear data structure in which insertion can be done at rear end and deletion of

elements can be dome at front end.

 A queue is a first-in, first-out (FIFO) data

structure in which the element that is

inserted first is the first one to be taken

out.

 Like stacks, queues can be implemented by using either arrays or linked lists.

Insert element into the Queue:

Delete element from Queue:

 A queue is full when rear = MAX – 1, An underflow condition occurs when we try to delete an

element from a queue that is already empty. If front = NULL and rear = NULL, then there is no

element in the queue.

Trees:

 A tree is a non-linear data structure which consists of a collection of nodes arranged in a

hierarchical order.

 One of the nodes is designated as the root node, and the remaining nodes can be partitioned into

disjoint sets such that each set is a sub-tree of the root

 The simplest form of a tree is a binary tree. A binary tree

consists of a root node and left and right sub-trees, where both

sub-trees are also binary trees.

 Each node contains a data element, a left pointer which points

to the left sub-tree, and a right pointer which points to the right

sub-tree.

 The root element is the topmost node which is pointed by a

‘root’ pointer. If root = NULL then the tree is empty.

` 5

 Here R is the root node and T1 and T2 are the left and right subtrees of R. If T1 is non-empty,

then T1 is said to be the left successor of R. Likewise, if T2 is non-empty, then it is called the

right successor of R.

Advantage: Provides quick search, insert, and delete operations

Disadvantage: Complicated deletion algorithm

Graphs:

 A graph is a non-linear data structure which is a collection of vertices (also called nodes) and

edges that connect these vertices.

 A node in the graph may represent a city and the edges connecting

the nodes can represent roads.

 A graph can also be used to represent a computer network where

the nodes are workstations and the edges are the network

connections.

 Graphs do not have any root node. Rather, every node in the graph can be connected with every

another node in the graph.

Advantage: Best models real-world situations

Disadvantage: Some algorithms are slow and very complex

 This section discusses the different operations that can be performed on the various data structures

previously mentioned.

 Traversing It means to access each data item exactly once so that it can be processed. For example,

to print the names of all the students in a class.

 Searching It is used to find the location of one or more data items that satisfy the given constraint.

Such a data item may or may not be present in the given collection of data items. For example, to

find the names of all the students who secured 100 marks in mathematics.

 Inserting It is used to add new data items to the given list of data items. For example, to add the

details of a new student who has recently joined the course.

 Deleting It means to remove (delete) a particular data item from the given collection of data items.

For example, to delete the name of a student who has left the course.

 Sorting Data items can be arranged in some order like ascending order or descending order

depending on the type of application. For example, arranging the names of students in a class in

an alphabetical order, or calculating the top three winners by arranging the participants’ scores in

descending order and then extracting the top three.

 Merging Lists of two sorted data items can be combined to form a single list of sorted data items.

OPERATIONS ON DATA STRUCTURES:

` 6

 An abstract data type (ADT) is a data structure, focusing on what it does and ignoring how it does

its job. (or) Abstract Data type (ADT) is a

type (or class) for objects whose behavior is

defined by a set of value and a set of

operations.

 Ex: stacks ADT and queues ADT. the user

is concerned only with the type of data and

the operations that can be performed on it.

 We can implement both these ADTs using

an array or a linked list.

Advantage of using ADTs

 Modification of a program is simple, For example, if you want to add a new field to a student’s

record to keep track of more information about each student, then it will be better to replace an

array with a linked structure to improve the program’s efficiency.

 In such a scenario, rewriting every procedure that uses the changed structure is not desirable.

Therefore, a better alternative is to separate the use of a data structure from the details of its

implementation.

 Algorithm is step by step logical procedure for solving a problem.

 In Algorithm each step is called Instruction.

 An Algorithm is any well-defined computational procedure that take some values as inputs and

produce some values as output.

 An Algorithm is a sequence of computational steps that transform input into output.

 An Algorithm has 5 basic properties:

1. Input:An Algorithm has take ‘0’ or more number of inputs that can be supplied as externally.

2. Output: An Algorithm must produce at least one output.

3. Definiteness: Each instruction in the algorithm must be clear.

4. Finiteness: An algorithm must terminate after a finite number of steps.

5. Effectiveness: Each operation should be effective. i.e the operations must be terminate after

finite amount of time.

Structure of an Algorithm:

1. Algorithm is a procedure consisting of heading and body. In body part we are writing

statements and in the head part we are writing the following.

Syntax: Algorithm name_of_Algo (param1,param2, …);

PRELIMINARIES OF ALGORITHM:

ABSTRACT DATA TYPE:

` 7

2. The beginning and ending of block should be indicated by ‘{‘ and ‘}’ or ‘start’ and ‘end’

respectively.

3. Every statement in the algorithm should be end with semicolon (;).

4. Single line

comments are

written using ‘//’

as beginning of

comments.

5. The identifier

should begin

with character

and it may be

combination of

alpha numeric.

6. Assignment operator (:=) we can use as follows

Variable := expression (or) value;

7. There are other type of operators such as Boolean operators (TRUE/FALSE), logical operators

(AND,OR,NOT) and relational operators (<,>,<=,>=,…..)

8. The input and output we can write it as read and print respectively.

9. The Array index are stored with in [] brackets. The index of array starts from ‘0’ to ‘N-1’.

Syntax: datatype Aray_name[size];

10. The conditional statements such as if-then (or) if-then-else are written as follows.

if(condition) then statements;

if(condition) then

statements;

else

statements;

 The efficiency of an algorithm can be computed by measuring the performance of an algorithm.

We can measure the performance of an algorithm in Two(2) ways.

1. Time Complexity

2. Space Complexity

1. Time Complexity:

 The time complexity of an algorithm is the amount of computing time required by an algorithm

to run its completion.

 There are 2 types of computing time 1. Compile time 2. Run time

TIME AND SPACE COMPLEXITY:

` 8

 The time complexity generally computed at run time (or) execution time.

 The time complexity can be calculated in terms of frequency count.

 Frequency count is a count denoting the number of times the statement should be executed.

 The time complexity can be calculated as

Comments – 0

Assignment / return statement – 1

Conditional (or) Selection Constructs – 1

Example 1: Sum of the elements in an Array

Statements Step count/ Execution Frequency Total Steps

Algorithm Addition (A,n) 0 - 0

{ 0 - 0

//A is an array of size ‘n’ 0 - 0

Sum :=0; 1 1 1

for i:=1 to n do 1 n+1 n+1

Sum:=Sum+A[i]; 1 n n

return Sum; 1 1 1

} 0 - 0

Total 2n+3

Example 2: Subtraction of two matrices

Statements Step count/ Execution Frequency Total Steps

Algorithm Subtract (A,B,C,m,n) 0 - 0

{ 0 - 0

for i:=1 to m do 1 m+1 m+1

for j:=1 to n do 1 m(n+1) mn+m

C[i,j] := A[i,j] – B[i,j]; 1 mn mn

} 0 - 0

Total 2mn+2m+1

2. Space Complexity:

 Space Complexity can be defined as amount of memory (or) space required by an Algorithm to

run.

 To compute the space complexity we use 2 factors i. Constant ii. Instance characteristics.

 The space requirement S(p) can be given as S(p) = C+Sp

Where C- Constant, it denotes the space taken for input and output.

Sp – Amount of space taken by an instruction, variable and identifiers.

` 9

Example 1: Sum of three numbers

Algorithm Add(a,b,c)

{

//a,b,c are float type variables

return a+b+c;

}

 The space required for this algorithm is: Assume a,b,c are occupies 1 word size each, total size

comes to be 3.

Example 2: Sum of Array values

Algorithm Addition (A,n)

{
//A is an array of size ‘n’

Sum :=0;

for i:=1 to n do
Sum:=Sum+A[i];

return Sum;

}

 The space required for this algorithm is:

One word space for each variable then i,sum,n 3

For Array A[] we require the size n

Total space complexity for this algorithm is S(p) ≥ (n+3)

What to Analyze in an algorithm:

An Algorithm can require different times to solve different problems of same size

1. Worst case: Maximum amount of time that an algorithm require to solve a problem of size ‘n’.

Normally we can take upper bound as complexity. We try to find worst case behavior.

2. Best case: Minimum amount of time that an algorithm require to solve a problem of size ‘n’.

Normally it is not much useful.

3. Average case: the average amount of time that an algorithm require to solve a problem of size ‘n’.

Some times it is difficult to find. Because we have to check all possible data organizations

 Searching means to find whether a particular value is present in an array or not.

 If the value is present in the array, then searching is said to be successful and the searching process

gives the location of that value in the array.

 However, if the value is not present in the array, the searching process displays an appropriate

message and in this case searching is said to be unsuccessful.

 Searching techniques are linear search, binary search and Fibonacci Search

SEARCHING:

` 10

 Linear search is a technique which traverse the array sequentially to locate given item or search

element.

 In Linear search, we access each element of an array one by one sequentially and see weather it

is desired element or not. We traverse the entire list and match each element of the list with the

item whose location is to be found. If the match found then location of the item is returned

otherwise the algorithm return NULL.

 A search is successful then it will return the location of desired element

 If A search will unsuccessful if all the elements are accessed and desired element not found.

 Linear search is mostly used to search an unordered list in which the items are not sorted.

Linear search is implemented using following steps...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the first element in the list.

Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function

Step 4 - If both are not matched, then compare search element with the next element in the list.

Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.

Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and

terminate the function.

Example:

Consider the following list of elements and the element to be searched...

LINEAR SEARCH:

` 11

` 12

• Binary search is the search technique which works efficiently on the sorted lists. Hence, in order

to search an element into some list by using binary search technique, we must ensure that the list

is sorted.

• Binary search follows divide and conquer approach in which, the list is divided into two halves

and the item is compared with the middle element of the list. If the match is found then, the

location of middle element is returned otherwise, we search into either of the halves depending

upon the result produced through the match.

Algorithm:

Step 1 - Read the search element from the user.

Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in the sorted list.

Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.

Step 5 - If both are not matched, then check whether the search element is smaller or larger than

the middle element.

Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left

sublist of the middle element.

Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right

sublist of the middle element.

Step 8 - Repeat the same process until we find the search element in the list or until sublist

contains only one element.

Step 9 - If that element also doesn't match with the search element, then display "Element is not

found in the list!!!" and terminate the function.

Example:

BINARY SEARCH:

` 13

Example 2:

` 14

 Fibonacci search is an efficient search algorithm based on divide and conquer principle that can

find an element in the given sorted array with the help of Fibonacci series in O(log N) time

complexity. This is based on Fibonacci series which is an infinite sequence of numbers denoting

a pattern which is captured by the following equation:

F(n)=n if n<=1

F(n)=F(n-1)+F(n-2) if n>1

o where F(i) is the ith number of the Fibonacci series where F(0) and F(1) are defined as 0

and 1 respectively.

 The first few Fibonacci numbers are: 0,1,1,2,3,5,8,13....

F(0) = 0

F(1) = 1

F(2) = F(1) + F(0) = 1 + 0 = 1

F(3) = F(2) + F(1) = 1 + 1 = 2

F(4) = F(3) + F(2) = 1 + 2 = 3 and so continues the series

 Other searches like binary search also work for the similar principle on splitting the search space

to a smaller space but what makes Fibonacci search different is that it divides the array in unequal

parts and operations involved in this search are addition and subtraction these arithmetic

operations takes place simple and hence reducing the work load of the computing machine.

Algorithm:

 Let the length of given array be n [0. n-1] and the element to be searched be x.

 Then we use the following steps to find the element with minimum steps:

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be f(M)

Let the two Fibonacci numbers preceding it be f(M-1) and f(M-2).

F(M) = F(Size of array)

F(M-1) = F(M) - 1

F(M-2) = F(M-1) -1

i (index) = min (offset + F(M-2) , n-1) //Offset = -1

2. While the array has elements to be checked:

-> Compare x with the last element of the range covered by f(M-2)

-> If x matches, return index value

-> Else if x is less than the element, move the three Fibonacci variables two Fibonacci down,

Indicating removal of approximately two-third of the unsearched array from rear end. Not Reset

offset to index

FIBONACCI SEARCH:

` 15

-> Else x is greater than the element, move the three Fibonacci variables one Fibonacci down.

Reset offset to index. Indicating removal of approximately one-third of the unsearched array from

front end.

3. Since there might be a single element remaining for comparison, check if F(M-1) is '1'. If Yes, compare

x with that remaining element. If match, return index value.

Example: The Elements in array & Search key is

Search_Key 85

elements 10 22 35 40 45 50 80 82 85 90 95

Index 0 1 2 3 4 5 6 7 8 9 10

Initially the Fibonacci series is …

0 1 1 2 3 5 8 13 21 34

1 2 3 4 5 6 7 8 9 10

 F(m-2) F(m-1) F(m)

To calculate index position i = min(offset+F(m-2), n-1), Initially offset value is -1.

F(m) F(m-1) F(m-2) Offset i(index) a[i] Consequence

13 8 5 -1 (-1+5,10) = 4 45 1 steps down, Reset offset

8 5 3 4 (4+3, 10)=7 82 1 steps down, Reset offset

5 3 2 7 (7+2, 10) =9 90 2 steps down

2 1 1 7 (7+1, 10) = 8 85 Return i

Finally our desired element is found at the location of 8.

 Definition: Sorting is a technique to rearrange the list of records(elements) either in ascending

or descending order, Sorting is performed according to some key value of each record.

Categories of Sorting:

The sorting can be divided into two categories. These are:

 Internal Sorting

 External Sorting

SORTINGS:

` 16

 Internal Sorting: When all the data that is to be sorted can be accommodated at a time in the

main memory (Usually RAM). Internal sortings has five different classifications: insertion,

selection, exchanging, merging, and distribution sort

 External Sorting: When all the data that is to be sorted can’t be accommodated in the memory

(Usually RAM) at the same time and some have to be kept in auxiliary memory such as hard disk,

floppy disk, magnetic tapes etc.

Ex: Natural, Balanced, and Polyphase.

 In Insertion sort the list can be divided into two parts, one is sorted list and other is unsorted list.

In each pass the first element of unsorted list is transfers to sorted list by inserting it in appropriate

position or proper place.

 The similarity can be understood from the

style we arrange a deck of cards. This sort

works on the principle of inserting an

element at a particular position, hence the

name Insertion Sort.

Following are the steps involved in insertion sort:

1. We start by taking the second element of the given array, i.e. element at index 1, the key.

The key element here is the new card that we need to add to our existing sorted set of cards

2. We compare the key element with the element(s) before it, in this case, element at index 0:

o If the key element is less than the first element, we insert the key element before the first

element.

o If the key element is greater than the first element, then we insert it after the first element.

3. Then, we make the third element of the array as key and will compare it with elements to it's left

and insert it at the proper position.

4. And we go on repeating this, until the array is sorted.

Example 1:

INSERTION SORT:

` 17

Example 2:

 Given a list of data to be sorted, we simply select the smallest item and place it in a sorted list.

These steps are then repeated until we have sorted all of the data.

 In first step, the smallest element is search in the list, once the smallest element is found, it is

exchanged with the element in the first position.

 Now the list is divided into two parts.

One is sorted list other is unsorted list.

Find out the smallest element in the

unsorted list and it is exchange with the

starting position of unsorted list, after

that it will added in to sorted list.

 This process is repeated until all the elements are sorted.

Ex: asked to sort a list on paper.

Algorithm:

SELECTION SORT(ARR, N)

Step 1: Repeat Steps 2 and 3 for K = 1 to N-1

Step 2: CALL SMALLEST(ARR, K, N, Loc)

Step 3: SWAP A[K] with ARR[Loc]

Step 4: EXIT

SELECTION SORT:

` 18

Algorithm for finding minimum element in the list.

SMALLEST (ARR, K, N, Loc)

Step 1: [INITIALIZE] SET Min = ARR[K]

Step 2: [INITIALIZE] SET Loc = K

Step 3: Repeat for J = K+1 to N

IF Min > ARR[J]

SET Min = ARR[J]

SET Loc = J

[END OF IF]

[END OF LOOP]

Step 4: RETURN Loc

Example 1:

` 19

Example 2: Consider the elements 23,78,45,88,32,56

Time Complexity:

Number of elements in an array is ‘N’

Number of passes required to sort is ‘N-1’

Number of comparisons in each pass is 1st pass N-1, 2nd Pass N-2 …

Time required for complete sorting is:

T(n) <= (N-1)*(N-1)

T(n) <= (N-1)2

Finally, The time complexity is O(n2).

 Bubble Sort is also called as Exchange Sort

 In Bubble Sort, each element is compared with its adjacent element

a) If he first element is larger than the second element then the position of the elements are

interchanged.

b) Otherwise, the position of the elements are not changed.

c) The same procedure is repeated until no more elements are left for comparison.

 After the 1st pass the largest element is placed

at (N-1)th location. Given a list of n elements,

the bubble sort requires up to n – 1 passes to

sort the data.

Example 1:

 We take an unsorted array for our example.

BUBBLE SORT:

` 20

 Bubble sort starts with very first two elements, comparing them to check which one is greater.

 In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33

with 27. We find that 27 is smaller than 33 and these two values must be swapped.

 Next we compare 33 and 35. We find that both are in already sorted positions.

 Then we move to the next two values, 35 and 10. We know then that 10 is smaller 35.

 We swap these values. We find that we have reached the end of the array. After one iteration, the

array should look like this −

 To be defined, we are now showing how an array should look like after each iteration. After the

second iteration, it should look like this

 Notice that after each iteration, at least one value moves at the end.

 And when there's no swap required, bubble sorts learns that an array is completely sorted.

Example 2:

` 21

Algorithm:

BUBBLE SORT(ARR, N)

Step 1: Read the array elements

Step 2: i:=0;

Step 3: Repeat step 4 and step 5 until i<n

Step 4: j:=0;

Step 5: Repeat step 6 until j<(n-1)-i

Step 6: if A[j] > A[j+1]

Swap(A[j],A[j+1])

End if

End loop 5

End loop 3

Step 7: EXIT

Time Complexity:

Number of elements in an array is ‘N’

Number of passes required to sort is ‘N-1’

Number of comparisons in each pass is 1st pass N-1, 2nd Pass N-2 …

Time required for complete sorting is:

T(n) <= (N-1)*(N-1)

T(n) <= (N-1)2

Finally, The time complexity

is O(n2).

 Quick sort follows Divide and Conquer algorithm. It is dividing array in to smaller parts based

on partitioning and performing the sort operations on those divided smaller parts. Hence, it works

well for large datasets.

So, here are the steps how Quick sort works in simple words.

1. First select an element which is to be called as pivot element.

2. Next, compare all array elements with the selected pivot element and arrange them in such a way

that, elements less than the pivot element are to its left and greater than pivot is to it's right.

3. Finally, perform the same operations on left and right side elements to the pivot element.

How does Quick Sort Partitioning Work

1. First find the "pivot" element in the array.

2. Start the left pointer at first element of the array.

3. Start the right pointer at last element of the array.

QUICK SORT:

` 22

4. Compare the element pointing with left pointer and if it is less than the pivot element, then move

the left pointer to the right (add 1 to the left index). Continue this until left side element is greater

than or equal to the pivot element.

5. Compare the element pointing with right pointer and if it is greater than the pivot element, then

move the right pointer to the left (subtract 1 to the right index). Continue this until right side

element is less than or equal to the pivot element.

6. Check if left pointer is less than or equal to right pointer, then swap the elements in locations of

these pointers.

7. Check if index of left pointer is greater than the index of the right pointer, then swap pivot element

with right pointer.

Example:

Algorithm:

quickSort(array, lb, ub)

{

if(lb< ub)

{

pivotIndex = partition(arr, lb, ub);

quickSort(arr, lb, pIndex - 1);

quickSort(arr, pivotIndex+1, ub);

}

}

` 23

 Radix sort is a linear sorting algorithm for integers and uses the concept of sorting names in

alphabetical order. When we have a list of sorted names, the radix is 26 (or 26 buckets) because

there are 26 letters in the English alphabet. So radix sort is also known as bucket sort.

 Observe that words are first sorted according to the first letter of the name. That is, 26 classes are

used to arrange the names, where the first class stores the names that begin with A, the second

class contains the names with B, and so on.

 During the second pass, names are grouped according to the second letter. After the second pass,

names are sorted on the first two letters. This process is continued till the nth pass, where n is the

length of the name with maximum number of letters.

 When radix sort is used on integers, sorting is done on each of the digits in the number. The sorting

procedure proceeds by sorting the least significant (LSD) to the most significant (MSD) digit.

While sorting the numbers, we have ten buckets, each for one digit (0, 1, 2, …, 9) and the number

of passes will depend on the length of the number having maximum number of digits.

Example 1: Sort the numbers given below using radix sort.

345, 654, 924, 123, 567, 472, 555, 808, 911

 In the first pass, the numbers are sorted according to the digit at ones place.

 After this pass, the numbers are collected bucket by bucket. In the second pass, the numbers are

sorted according to the digit at the tens place.

 In the third pass, the numbers are sorted according to the digit at the hundreds place.

RADIX SORT:

` 24

 The numbers are collected bucket by bucket. After the third pass, the list can be given as final

sorted list. 123, 345, 472, 555, 567, 654, 808, 911, 924.

Algorithm:

1. Let A be a linear array of n elements A[1], A[2], A[3] A[n]. Digit is the total number of digit in

the largest element in array A.

2. Input n number of elements in an array A.

3. Find the total number of digits in the largest element in the array.

4. Initialize i=1 and repeat the steps 4 and 5 until(i<=Digit).
5. Initialize the bucket j=0 and repeat the steps 5until (j<n).
6. Compare the ith position of each element of the array with bucket number and place it in the

corresponding bucket.

7. Read the elements (S) of the bucket from 0th bucket to 9th bucket and from the first position to the higher

one to generate new array A.

8. Display the sorted array A.
9. Exit.

Divide and Conquer:

 Divide and Conquer is an algorithmic pattern. In algorithmic methods, the design is to take a

dispute on a huge input, break the input into minor pieces, decide the problem on each of the small

pieces, and then merge the piecewise solutions into a global solution. This mechanism of solving

the problem is called the Divide & Conquer Strategy.

 Divide and Conquer algorithm consists of a dispute using

the following three steps.

1. Divide the original problem into a set of sub-problems.

2. Conquer: Solve every sub-problem individually,

recursively.

3. Combine: Put together the solutions of the sub-problems

to get the solution to the whole problem.

Merge sort is one of the most efficient sorting algorithms. It works on the principle of Divide and

Conquer. Merge sort repeatedly breaks down a list into several sublists until each sublist consists of a

single element and merging those sublists in a manner that results into a sorted list.

MERGE SORT:

` 25

Implementation Recursive Merge Sort:

 The merge sort starts at the Top and proceeds downwards, “split the array into two, make a

recursive call, and merge the results.”, until one gets to the bottom of the array-tree.

Example: Let us consider an example to understand the approach better.

1. Divide the unsorted list into n sub-lists based on mid value, each array consisting 1 element

2. Repeatedly merge sub-lists to produce newly sorted sub-lists until there is only 1 sub-list

remaining. This will be the sorted list

Recursive Mere Sort Example:

Example 2:

MergeSort Algoritm:

MergeSort(A, lb, ub)

{

If lb<ub

{

mid = floor(lb+ub)/2;

mergeSort(A, lb, mid)

mergeSort(A, mid+1, ub)

merge(A, lb, ub , mid)

}

}

` 26

Two- Way Merge Sort:

Merge Algorithm:

Step 1: set i,j,k=0

Step 2: if A[i]<B[j] then

copy A[i] to C[k] and increment i and k

else

copy B[j] to C[k] and increment j and k

Step 3: copy remaining elements of either A or B into Array C.

Time Complexities All the Searching & Sorting Techniques:

Syllabus:

Unit – III

• Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked list,

Implementation of Queues-using Arrays and using Linked list, Application of Queues-Circular

Queues, Deques, Priority Queues, Multiple Queues.

• Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked list

Representation of Stacks, Operations on Linked Stack, Applications-Reversing list, Factorial

Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.

QUEUE:

● Queue is a linear data structure in which

elements can be inserted from one end called

rear and deleted from other end called front.

● The deletion or insertion of elements can take place only at the front or rear end called

dequeue and enqueue respectively. The first element that gets added into the queue is

the first one to get removed from the queue. Hence the queue is referred to as First-In-

First-Out list (FIFO).

Operations performed on Queue:

There are two possible operations performed on a queue. They are

✔ enqueue: Allows inserting an element at the rear of the queue.

✔ dequeue: Allows removing an element from the front of the queue.

ARRAYs: Queues can be easily

represented using linear arrays. Every

queue has front and rear variables that

point to the position from where deletions

and insertions can be done, respectively.

The array representation of a queue is

shown

Drawback: The array must be declared to

have some fixed size. If we allocate space

REPRESENTATION OF QUEUEs:

for 50 elements in the queue and it hardly uses 20–25 locations, then half of the space will be

wasted.

LINKED LISTs:

 In a linked queue, every element has two parts, one that stores the data and another that

stores the address of the next element.

 The START pointer of the linked list is used as FRONT. Here, we will also use another

pointer called REAR, which will store the address of the last element in the queue. All

insertions will be done at the rear end and all the deletions will be done at the front end.

 If FRONT = REAR = NULL, then it indicates that the queue is empty.

Using Arrays:

Algorithm for ENQUEUE operation

1. Check whether queue is FULL. (rear >= SIZE-1)

2. If it is FULL, then display an error message "Queue is FULL!!! Insertion is not

possible!!!" and terminate the function.

3. If it is NOT FULL, then increment rear value by one (rear++) and

set queue[rear] = value.

Algorithm for DEQUEUE operation

1. Check whether queue is EMPTY. (front == -1)

2. If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and

terminate the function.

3. If it is NOT EMPTY, then display queue[front] as deleted element, increment

the front value by one (front ++). If we are deleting last element both front and rear are

equal (front == rear), then set both front and rear to '-1' (front = rear = -1).

Implementation:

IMPLEMENTATION OF QUEUEs:

 Let us consider a queue, which can hold

maximum of five elements.

 Initially the queue is empty. An element can be

added to the queue only at the rear end of the

queue.

 Before adding an element in the queue, it is

checked whether queue is full. If the queue is

full, then addition cannot take place. Otherwise,

the element is added to the end of the list at the

rear

end. If

we are inserting first element into the queue then

change front to 0 (Zero).

 Now, delete an element 1. The element

deleted is the element at the front of the

queue. So the status of the queue is:

 When the last element delete 5. The

element deleted at the front of the queue. So the

status of the queue is empty. So change the

values of front and rear to -1 (front=rear= -1)

 The dequeue operation deletes the element from the front of the queue. Before

deleting and element, it is checked if the queue is empty. If not the element pointed by front is

deleted from the queue and front is now made to point to the next element in the queue.

 Drawback: If we implement the queue using an array, we need to specify the array size

at the beginning (at compile time). We can't change the size of an array at runtime. So,

the queue will only work for a fixed number of elements.

Using Linked List:

 In a linked queue, each node of the queue consists of two parts i.e. data part and the next

part. Each element of the queue points to its immediate next element in the memory.

 In the linked queue, there are two pointers maintained in

the memory i.e. front pointer and rear

pointer. The front pointer contains the

address of the starting element of the

queue while the rear pointer contains the

address of the last element of the queue.

 Insertion and deletions are performed at rear and front end respectively. If front and rear

both are NULL, it indicates that the queue is empty. Initially

struct node *front = NULL, *rear = NULL;

Operation on Linked Queue: There are two basic operations which can be implemented on the

linked queues. The operations are Enqueue and Dequeue.

Enqueue function: Enqueue function will add the element at the end of the linked list.

1. Declare a new node and allocate memory for it.

2. If front == NULL, make both front and rear points to the new node.

3. Otherwise, add the new node in rear->next (end of the list) and make the new node

as the rear node. i.e. rear = new node

Dequeue function: Dequeue function will remove the first element from the queue.

1. Check whether the queue is empty or not

2. If it is the empty queue (front == NULL), We can't dequeue the element.

3. Otherwise, Make the front node points to the next node. i.e front = front->next;

if front pointer becomes NULL, set the rear pointer also NULL.

Free the front node's memory.

Example: Enqueue()

Dequeue()

TYPES OF QUEUES:

A queue data structure can be classified into the following types:

1. Circular Queue 2. Deque 3. Priority Queue 4. Multiple Queue

CIRCULAR QUEUEs:

 In a Linear queue, once the queue is completely full, it's not possible to insert any more

elements. When we dequeue any element to remove it from the queue, we are actually

moving the front of the queue forward, but rear is still pointing to the last element of

the queue, we cannot insert new elements.

 Circular Queue is also a linear data structure, which follows the principle of FIFO(First

In First Out), but instead of ending the queue at the last position, it again starts from the

first position after the last, hence making the queue behave like a circular data structure.

Operations on Circular Queue: The following are the operations that can be performed

o enQueue(value): This function is used to insert the new value in the Queue. The new

element is always inserted from the rear end.

o deQueue(): This function deletes an element from the Queue. The deletion in a Queue

always takes place from the front end.

Enqueue operation: The steps of enqueue operation are given below:

o First, we will check whether the Queue is full or not.

o Initially the front and rear are set to -1. When we insert the first element in a Queue, front

and rear both are set to 0.

o From 2nd element onwards, When we insert a new element, the rear gets incremented,

i.e., rear=rear+1.

Queue is not full:

o If rear != max - 1, then rear will be incremented and the new value will be inserted at the
rear end of the queue.

o If front != 0 and rear = max - 1, it means that queue is not full, then set the value of rear
to 0 and insert the new element there.

Queue is full:

o When front ==0 && rear = max-1, which means that front is at the first position of the
Queue and rear is at the last position of the Queue.

o front== rear + 1;

Dequeue Operation: The steps of dequeue operation are given below:

o First, we check whether the Queue is empty or not. If the queue is empty, we cannot

perform the dequeue operation.

o When the element is deleted, the value of front gets decremented by 1.

o If there is only one element left which is to be deleted, then the front and rear are reset -1.

Let's understand the enqueue and dequeue operation through the diagrammatic

representation.

Applications of Queue:

1. Queues are widely used as waiting lists for a single shared resource like printer, disk, CPU.

2. Queues are used to transfer data asynchronously between two processes

3. Queues are used as buffers on MP3 players and portable CD players, iPod playlist.

4. Queues are used in Playlist for jukebox to add songs to the end, play from the front.

5. Queues are used in operating system for handling interrupts. The interrupts are handled in

the same order as they arrive i.e First come first served.

DEQUE:

Deque or Double Ended Queue is a

type of queue in which insertion and

removal of elements can be performed

from either from the front or rear.

Thus, it does not follow FIFO rule

(First In First Out).

Types of Deque:

1. Input Restricted Deque: In this deque, input is restricted at a single end but allows deletion

at both the ends.

2. Output Restricted Deque: In this deque, output is restricted at a single end but allows

insertion at both the ends.

Operations on a Deque

 Initially take an array (deque) of size n. and Set two pointers at the first position and

set front = -1 and rear = -1.

1. Insert at the Front: This operation adds an element at the front.

 Check the position of front, If front < 1, we can’t add elements in the front end.

Otherwise decrement the front and at front location we can insert the element.

2. Insert at the Rear: This operation adds an element to the rear.

 Check if the array is full. Then the queue is overflow. Otherwise, reinitialize rear = 0

& front=0 for the first insertion, Else, increase rear by 1.and at rear location we can

insert the element.

3. Delete from the Front: The operation deletes an element from the front.

 Check If the deque is empty (i.e. front = -1), deletion cannot be performed (underflow

condition). If the deque has only one element (i.e. front = rear), set front = -1 and

rear = -1. Else, front = front + 1.

4. Delete from the Rear: This operation deletes an element from the rear.

 If the deque is empty (i.e. front = -1), deletion cannot be performed (underflow

condition). If the deque has only one element (i.e. front = rear), set front = -1 and

rear = -1. Else, rear = rear - 1.

Priority Queue:-

 A priority queue is a data structure in which each element is assigned a priority. The

priority of the element will be used to determine the order in which the elements will be

processed.

 The general rules of processing the elements of a priority queue are

o An element with higher priority is processed before an element with a lower priority.

o Two elements with the same priority are processed on a first-come-first-served (FCFS)

basis.

Array Representation of a Priority Queue:

 When arrays are used to implement a priority queue, then a separate queue for each

priority number is maintained. Each of these queues will be implemented using circular

arrays or circular queues. Every individual queue will have its own FRONT and REAR

pointers.

 We use a two-dimensional array for this purpose where each queue will be allocated the

same amount of space.

 FRONT[P] and REAR[P] contain the front and rear values of row P, where P is the priority

number.

Insertion:

 To insert a new element with priority P in the priority queue, add the element at the rear

end of row P, where P is the row number as well as the priority number of that element.

 For example, if we have to insert an element X with priority number 2, then the priority

queue will be given as shown in Fig.

Deletion:

 To delete an element, we find the first nonempty queue and then process the front element

of the first non-empty queue.

 In our priority queue, the first non-empty queue is the one with priority number 6 and the

front element is K, so K will be deleted and processed first.

Multiple Queues:-

 When we implement a queue using an array, the size of the array must be known in advance.

If the queue is allocated less space, then frequent overflow conditions will be encountered.

To deal with this problem, the code will have to be modified to reallocate more space for

the array.

 In case we allocate a large amount of space for the queue, it will result in sheer wastage of

the memory. So a better solution to deal with this problem is to have multiple queues or to

have more than one queue in the same array of sufficient size.

 An array Queue[n] is used to represent two queues, Queue A and Queue B. The value of n

is such that the combined size of both the queues will never exceed n. While operating on

these queues, it is important to note one thing—queue A will grow from left to right,

whereas queue B will grow from right to left at the same time.

Example:

 In the above example the array consists two queues like QA and QB. For QA there are

pointers like fA(front of QA) and rA(rear of A). similarly for QB are fB & rB.

 Initially for QA, the pointer values of fA=rA= -1. For QB, the pointer values are

fB=rB=SIZE. Because initially QA and QB are empty.

 For the first insertion in QA, the values of fA=rA=0. Similarly for QB, the values are

fB=rB=SIZE-1.

 From the second insertion onwards we can increment only the rear pointer rA for QA and

decrement the rear rB for QB.

 Delete the elements from queue only at front end. In QA, the elements can delete from fA,

if you delete the element then increment fA. In QB, the elements can delete from fB, if you

delete the element then decrement fB.

 When the condition rA=rB-1 or rA+1=rB meets then the entire queue is full. If you try to

insert the element in either of queues it says that QUEUE is OVERFLOW.

Stack:-

● Stack is a linear data structure in which insertion and

deletion can perform at the same end called top of stack.

● When an item is added to a stack, the operation is called

push, and when an item is removed from the stack the

operation is called pop.

● Stack is also called as Last-In-First-Out (LIFO) list which

means that the last element that is inserted will be the first

element to be removed from the stack.

● When a stack is completely full, it is said to be Stack is Overflow and if stack is completely

empty, it is said to be Stack is Underflow.

Array Representation of Stacks:

 Every stack has a variable called TOP associated with it, which is used to pointing the

topmost element of the stack. It is this position where the element will be inserted to or

deleted from.

 There is another variable called MAX, which is used to store the maximum number of

elements that the stack can hold.

 If TOP = NULL, then it indicates that the stack is empty and if TOP = MAX–1, then the

stack is full.

Array Implementation of Stack:

The basic operations performed in a Stack:

1. Push(x) - add element x at the top of the stack

2. Pop() - remove top element from the stack

3. peek() - get top element of the stack without removing it

Algorithm for PUSH operation:

1. Check if the stack is full or not.

2. If the stack is full, then print error of overflow and exit the program.

3. If the stack is not full, then increment the top and add the element at top location.

REPRESENTATION & IMPLEMENTATION STACK:

Algorithm for POP operation

1. Check if the stack is empty or not.

2. If the stack is empty, then print error of underflow and exit the program.

3. If the stack is not empty, then print the element at the top and decrement the top.

Algorithm for PEEK operation

1. Check if the stack is empty or not.

2. If the stack is empty, then print error of underflow and exit the program.

3. If the stack is not empty, then print the element at the top without removing it.

Linked Representation of Stacks:

 The drawback in that the array must be declared to have some fixed size. In case the stack is

a very small one or its maximum size is known in advance

 In a linked stack, every node has two parts, one that stores data and another that stores the

address of the next node. The START pointer of the linked list is used as TOP.

 All insertions and deletions are done at the TOP (similar to insertion at beginning).

 If TOP = NULL, then it indicates that the stack is empty.

 The linked representation of a stack is

Linked Implementation of Stack:

 In a linked stack, each node of the stack consists of two parts i.e. data part and the next part.

Each element of the stack points to its immediate next element in the memory.

 In the linked stack, there one pointer maintained in the

memory i.e. TOP pointer. The TOP pointer contains the

address of the starting element of the STACK.

 Both Insertion and deletions are performed at only one end

called TOP. If TOP is NULL, it indicates that the stack is empty. Initially

struct node *TOP = NULL ;

Operation on Linked STACK: There are two basic operations which can be implemented on the

linked queues. The operations are PUSH and POP.

PUSH function: PUSH function will add the element at the beginning of the linked list.

1. Declare a new node and allocate memory for it.

2. If TOP == NULL, make TOP points to the new node.

3. Otherwise, add the new node at TOP end and makes the next of new node is previous TOP.

POP function: POP function will remove the TOP element from the STACK.

1. Check whether the stack is empty or not

2. If it is the stack is empty (TOP == NULL), We can't POP the element.

3. Otherwise, Make the TOP node points to the next node. i.e TOP = TOP->next; Free the

TOP node's memory.

Algorithms:

Applications of Stacks

✔ Stack is used to reversing the given string.

✔ Stack is used to evaluate a postfix expression.

✔ Stack is used to convert an infix expression into postfix/prefix form.

✔ Stack is used to matching the parentheses in an expression.

Reversing list:

A list of numbers or string can be reversed by using the stack, perform the following steps

1. Reading the elements from the array and pushed into the stack.

2. Pop the elements and again stored into the array starting from first index

Algorithm: Example:

Factorial Calculation:

 To find the solution of larger problem, a general method is reduce the larger problem into one

or more sub problems. This process will continuous until the sub problem is finding the

solution. Finally using all the sub problems solutions we will find the solution for the larger

problem.

 A Recursion is defined as a function that calls itself.

 To understand recursion, let us take an example of calculating factorial of a number.

 To calculate n!, we multiply the number with factorial of the number that is 1 less than that

number. n! = n*(n-1)*(n-2)* ... *2*1

 In other words, n! = n * (n–1)!

 Let us say we need to find the value of 5!

5! = 5 * 4 * 3 * 2 * 1 = 120

 This can be written as 5! = 5 * 4!,

where 4!= 4 * 3!

Therefore, 5! = 5 * 4 * 3!

Similarly, 5! = 5 * 4 * 3 * 2!

Expanding further 5! = 5 * 4 * 3 * 2 * 1!

We know, 1! = 1

 Now if you look at the problem carefully, you can see that we can write a recursive function to

calculate the factorial of a number. Every recursive function must have a base case and a recursive

case. For the factorial function,

Base case is when n = 1, because if n = 1, the result will be 1 as 1! = 1.

Recursive case of the factorial function will call itself but with a smaller value of n, this

case can be given as factorial(n) = n × factorial (n–1)

Evaluation of Expressions:-

● An expression is defined as the combination of operands (variables, constants) and operators

arranged as per the syntax of the language.

● An expression can be represented using three different notations. They are infix, postfix and

prefix notations:

Prefix: An arithmetic expression in which we fix (place) the arithmetic operator before (pre) its two

operands. The prefix notation is called as polish notation. Example: + A B

Infix: An arithmetic expression in which we fix (place) the arithmetic operator in between the two

operands. Example: A + B

Postfix: An arithmetic expression in which we fix (place) the arithmetic operator after (post) its two

operands. The postfix notation is called as suffix notation OR reverse polish notation.

Example: A B +

Operator Precedence: When an expression consist different level of operators we follow it. We

consider five binary operations: +, -, *, / and ^ (exponentiation). For these binary operations, the

following in the order of precedence (highest to lowest): ^ , * , /, +, -

Operator Associativity: When an expression consist more than one same level precedence operators

we follow it.

Basically we have Left to Right associativity and Right to Left Associativity. Most of the operators

are follows Left to Right but some of the operators are follow Right to left Associativity like Unary

(+/-), ++/-- , Logical negation (!), Pointer and address (*,&), Conditional Operators and Assignment

operators(=,+=,-=,*=,/=,%=).

Example: x = a / b – c + d * e – a * c

Let a = 4, b = c = 2, d = e = 3 then the value of x is found as

= ((4 / 2) – 2) + (3 * 3) – (4 * 2) = 0 + 9 – 8 = 1

EVALUATION OF POSTFIX EXPRESSION:

The standard representation for writing expressions is infix notation. But the compiler uses

the postfix notation for evaluating the expression rather than the infix notation. It is an easy task for

evaluating the postfix expression than infix expression because there are no parentheses. To evaluate

an expression we scan it from left to right. The postfix expression is evaluated easily by the use of a

stack.

To evaluate a postfix expression use the following steps...

1. Read the poststring from left to right

2. Initialize an empty Stack

3. Repeat until end of the poststring

i. If the scanned character is operand, then push it on to the Stack.

ii. If the scanned character is operator (+ , - , * , / etc.,), then pop top two elements from

the stack, perform the operation with the operator then push result back on to the Stack.

4. Finally! We have one element in the stack, perform a pop operation and display the popped

value as final result.

Postfix Expression is 5 3 + 8 2 - *

Symbol Stack Evaluation

Initially

Stack is empty

5

Push(5)

5

3

3 5

Push(3)

8
+

Value1=pop()

Value2=pop()
Result=Value2+Value1

Push(Result)

8

Push(8)

2

Push(2)

-

Value1=pop()

Value2=Pop()

Result=Value2-Value1

Push(Result)

*
Value1=pop()

Value2=Pop()
Result=Value2*Value1

Push(Result)

Value1=3

Value2=5

Result=5+3=8

Push(8)

Value1=2

Value2=8

Result=8-2=6

Push(6)

Value1=6

Value2=8

Result=8*6=48

Push(48)

End of Expression

48

Result=pop()

Final Result is 48

48

8

8

2

8

8

6

8

Conversion of INFIX to POSTFIX:

Procedure to convert from infix expression to postfix expression is as follows.

1. Initialize an empty stack

2. Push “(“onto Stack, and add “)” to the end of Infix string.

3. Scan the Infix string from left to right until end of the infix

i. If the scanned character is “(“, pushed into the stack.

ii. If the scanned character is “)”, pop the elements from the stack up to encountering the

“(“, and add the popped elements to postfix string except parentheses.

iii. If the scanned character is an operand, add it to the Postfix string.

iv. If the scanned character is an Operator, compare the precedence of the character with

the element on top of the stack. If top of Stack has lower precedence over the scanned

character then push the operator into the stack else pop the element from the stack and

add it to postfix string and push the scanned character to stack.

Example: a * (b + c) *d)

Token Stack Postfix String

 (

a (
a

* (*

A

((* (

A

b (* (

Ab

+ (* (+ Ab

c (* (+ Abc

) (*
abc+

* (*
abc+*

d (*
abc+*d

)

abc+*d*

1

2

3

4

5

6

7

8

9

1. BASIC CONCEPTS

INTRODUCTION

UNIT-V

GRAPHS

A graph is an abstract data structure that is used to implement the mathematical concept of

graphs. It is basically a collection of vertices (also called nodes) and edges that connect these

vertices. A graph is often viewed as a generalization of the tree structure, where instead of

having a purely parent-to-child relationship between tree nodes, any kind of complex

relationship can exist.

WHY GRAPHS ARE USEFUL

Graphs are widely used to model any situation where entities or things are related to each other

in pairs. For example, the following information can be represented by graphs:

 Family trees: in which the member nodes have an edge from parent to each of their

children.

 Transportation networks : in which nodes are airports, intersections, ports, etc. The edges

can be airline flights, one-way roads, shipping routes, etc.

DEFINATION:

A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G)

represents the edges that connect these vertices.

We have two types of Graphs. Basically:

1. UNDIRECTED GRAPH

2. DIRECTED GRAPH

UNDIRECTED GRAPH:

Shows a graph with V(G) = {A, B, C, D and E} and E(G) = {(A, B), (B, C), (A, D), (B, D),

(D,E), (C, E)}. Note that there are five vertices or nodes and six edges in the graph.

FIGURE 5.1

A graph can be directed or undirected. In an undirected graph, edges do not have any direction

associated with them. That is, if an edge is drawn between nodes A and B, then the nodes can be

traversed from A to B as well as from B to A. Figure 5.1 shows an undirected graph because it

does not give any information about the direction of the edges.

DIRECTED GRAPH:

A directed graph G, also known as a digraph, is a graph in which every edge has a direction

assigned to it. An edge of a directed graph is given as an ordered pair (u, v) of nodes in G. For an

edge (u, v),

 The edge begins at u and terminates at v.

 u is known as the origin or initial point of e. Correspondingly, v is known as the

destination or terminal point of e.

 u is the predecessor of v. Correspondingly, v is the successor of u.

 Nodes u and v are adjacent to each other.

FIGURE 5.2

Which shows a directed graph. In a directed graph, edges form an ordered pair. If there is an

edge from A to B, then there is a path from A to B but not from B to A. The edge (A, B) is said

to initiate from node A (also known as initial node) and terminate at node B (terminal node).

2. REPRESENTATION OF GRAPHS

There are two common ways of storing graphs in the computer’s memory. They are:

 Sequential representation by using an adjacency matrix.

 Linked representation by using an adjacency list that stores the neighbours of a node

using a linked list.

ADJACENCY MATRIX REPRESENTATION

An adjacency matrix is used to represent which nodes are adjacent to one another.

By definition: Two nodes are said to be adjacent if there is an edge connecting them.

In a directed graph G, if node v is adjacent to node u, then there is definitely an edge from u to v.

That is, if v is adjacent to u, we can get from u to v by traversing one edge. For any graph G having

n nodes, the adjacency matrix will have the dimension of n X n.

In an adjacency matrix, the rows and columns are labelled by graph vertices.

 An entry aij in the adjacency matrix will contain 1, if vertices vi and vj are adjacent to

each other.

 However, if the nodes are not adjacent, aij will be set to zero.

FIGURE 5.3 Adjacency Matrix Entry

Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or a Boolean matrix.

The entries in the matrix depend on the ordering of the nodes in G. Therefore, a change in the

order of nodes will result in a different adjacency matrix.

Figure 5.4 shows some graphs and their corresponding adjacency matrices.

From the above examples, we can draw the following conclusions:

 For a simple graph (that has no loops), the adjacency matrix has 0s on the diagonal.

 The adjacency matrix of an undirected graph is symmetric.

 The memory use of an adjacency matrix is O(n2), where n is the number of nodes in the

graph.

 Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of

edges in the graph.

 The adjacency matrix for a weighted graph contains the weights of the edges connecting

the nodes.

Now let us discuss the powers of an adjacency matrix:

From adjacency matrix A1, we can conclude that an entry 1 in the ith row and jth column means

that there exists a path of length 1 from vi to vj. Now consider, A2, A3, and A4.

Any entry aij = 1 if aik = akj = 1. That is, if there is an edge (vi, vk) and (vk, vj), then there is a

path from vi to vj of length 2.

FIGURE 5.5 Directed graph with its adjacency matrix

Now, based on the above calculations, we define matrix B as:

Br = A1 + A2 + A3 + ... + Ar

FIGURE 5.6 Path Matrix Entry

The main goal to define matrix B is to obtain the path matrix P. The path matrix P can be

calculated from B by setting an entry Pij = 1, if Bij is non-zero and Pij = 0, if otherwise. The path

matrix is used to show whether there exists a simple path from node vi to vj or not.

Let us now calculate matrix B and matrix P using the above discussion.

ADJACENCY LINKED LIST REPRESEENTATION

 An adjacency list is another way in which graphs can be represented in the computer’s

memory.

 This structure consists of a list of all nodes in G.

 Furthermore, every node is in turn linked to its own list that contains the names of all

other nodes that are adjacent to it.

The key advantages of using an adjacency list are:

 It is easy to follow and clearly shows the adjacent nodes of a particular node.

 It is often used for storing graphs that have a small-to-moderate number of edges. That is,

an adjacency list is preferred for representing sparse graphs in the computer’s memory;

otherwise, an adjacency matrix is a good choice.

 Adding new nodes in G is easy and straightforward when G is represented using an

adjacency list. Adding new nodes in an adjacency matrix is a difficult task, as the size of

the matrix needs to be changed and existing nodes may have to be reordered.

FIGURE 5.7 Graph G and its adjacency list

 For a directed graph, the sum of the lengths of all adjacency lists is equal to the number

of edges in G.

 However, for an undirected graph, the sum of the lengths of all adjacency lists is equal to

twice the number of edges in G because an edge (u, v) means an edge from node u to v as

well as an edge from v to u.

 Adjacency lists can also be modified to store weighted graphs.

Let us now see an adjacency list for an undirected graph as well as a weighted graph.

FIGURE 5.8 Adjacency list for an undirected graph and a weighted graph

PROGRAMMING EXAMPLE

1. Write a program to create a graph of n vertices using an adjacency list. Also write the

code to read and print its information and finally to delete the graph.

#include <stdio.h>

#include <conio.h>

#include <alloc.h>

struct node

{

char vertex;

struct node *next;

};

struct node *gnode;

void displayGraph(struct node *adj[], int no_of_nodes);

void deleteGraph(struct node *adj[], int no_of_nodes);

void createGraph(struct node *adj[], int no_of_nodes);

int main()

{

struct node *Adj[10];

int i, no_of_nodes;

clrscr();

printf("\n Enter the number of nodes in G: ");

scanf("%d", &no_of_nodes);

for(i = 0; i < no_of_nodes; i++)

Adj[i] = NULL;

createGraph(Adj, no_of_nodes);

printf("\n The graph is: ");

displayGraph(Adj, no_of_nodes);

deleteGraph(Adj, no_of_nodes);

getch();

return 0;

}

void createGraph(struct node *Adj[], int no_of_nodes)

{

struct node *new_node, *last;

int i, j, n, val;

for(i = 0; i < no_of_nodes; i++)

{

last = NULL;

printf("\n Enter the number of neighbours of %d: ", i);

scanf("%d", &n);

for(j = 1; j <= n; j++)

{

printf("\n Enter the neighbour %d of %d: ", j, i);

scanf("%d", &val);

new_node = (struct node *) malloc(sizeof(struct node));

new_node –> vertex = val;

new_node –> next = NULL;

if (Adj[i] == NULL)

Adj[i] = new_node;

else

last –> next = new_node;

last = new_node

}

}

}

void displayGraph (struct node *Adj[], int no_of_nodes)

Graphs 393

{

struct node *ptr;

int i;

for(i = 0; i < no_of_nodes; i++)

{

ptr = Adj[i];

printf("\n The neighbours of node %d are:", i);

while(ptr != NULL)

{

printf("\t%d", ptr –> vertex);

ptr = ptr –> next;

}

}

}

void deleteGraph (struct node *Adj[], int no_of_nodes)

{

int i;

struct node *temp, *ptr;

for(i = 0; i <= no_of_nodes; i++)

{

ptr = Adj[i];

while(ptr ! = NULL)

{

temp = ptr;

ptr = ptr –> next;

free(temp);

}

Adj[i] = NULL;

}

}

Output

Enter the number of nodes in G: 3

Enter the number of neighbours of 0: 1

Enter the neighbour 1 of 0: 2

Enter the number of neighbours of 1: 2

Enter the neighbour 1 of 1: 0

Enter the neighbour 2 of 1: 2

Enter the number of neighbours of 2: 1

Enter the neighbour 1 of 2: 1

The neighbours of node 0 are: 1

The neighbours of node 1 are: 0 2

The neighbours of node 2 are: 0

Note If the graph in the above program had been a weighted graph, then the structure of the node

would have been:

typedef struct node

{

int vertex;

int weight;

struct node *next;

};

3.GRAPH TRAVERSALS

There are two standard methods of graph traversal. These two methods are:

1. Breadth-first search

2. Depth-first search

1. Breadth-First Search Algorithm

Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores

all the neighbouring nodes. Then for each of those nearest nodes, the algorithm explores their

unexplored neighbour nodes, and so on, until it finds the goal.

ALGORITHM

Step 1: SET STATUS = 1 (ready state)

for each node in G

Step 2: Enqueue the starting node A

and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty

Step 4: Dequeue a node N. Process it

and set its STATUS = 3

(processed state).

Step 5: Enqueue all the neighbours of

N that are in the ready state

(whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

FIGURE 5.9 Graph G And Its Adjacnecy List

EXAMPLE

Consider the graph G given in Fig. 5.9.The adjacency list of G is also given. Assume that G

represents the daily flights between different cities and we want to fly from city A to I with

minimum stops. That is, find the minimum path P from A to I given that every edge has a length

of 1.

SOLUTION:

The minimum path P can be found by applying the breadth-first search algorithm that begins at

city A and ends when I is encountered. During the execution of the algorithm, we use two arrays:

1. QUEUE

2. ORIG

 While QUEUE is used to hold the nodes that have to be processed,

 ORIG is used to keep track of the origin of each edge.

 Initially, FRONT = REAR = –1.

The algorithm for this is as follows:

(a) Add A to QUEUE and add NULL to ORIG.

FRONT = 0 QUEUE = A

REAR = 0 ORIG = \0

(b) Dequeue a node by setting FRONT = FRONT + 1 (remove the FRONT element of QUEUE)

and enqueue the neighbours of A. Also, add A as the ORIG of its neighbours.

FRONT = 1 QUEUE = A B C D

REAR = 3 ORIG = \0 A A A

(c) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also,

add B as the ORIG of its neighbours.

FRONT = 2 QUEUE = A B C D E

REAR = 4 ORIG = \0 A A A B

(d) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of C. Also,

add C as the ORIG of its neighbours. Note that C has two neighbours B and G. Since B has

already been added to the queue and it is not in the Ready state, we will not add B and only add

G.

FRONT = 3 QUEUE = A B C D E G

REAR = 5 ORIG = \0 A A A B C

(e) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of D. Also,

add D as the ORIG of its neighbours. Note that D has two neighbours C and G. Since both of

them have already been added to the queue and they are not in the Ready state, we will not add

them again.

FRONT = 4 QUEUE = A B C D E G

REAR = 5 ORIG = \0 A A A B C

(f) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also,

add E as the ORIG of its neighbours. Note that E has two neighbours C and F. Since C has

already been added to the queue and it is not in the Ready state, we will not add C and add only

F.

FRONT = 5 QUEUE = A B C D E G F

REAR = 6 ORIG = \0 A A A B C E

(g) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of G. Also,

add G as the ORIG of its neighbours. Note that G has three neighbours F, H, and I.

FRONT = 6 QUEUE = A B C D E G F H I

REAR = 9 ORIG = \0 A A A B C E G G

Since F has already been added to the queue, we will only add H and I. As I is our final

destination, we stop the execution of this algorithm as soon as it is encountered and added to the

QUEUE. Now, backtrack from I using ORIG to find the minimum path P. Thus, we have

P as A -> C -> G -> I.

Features of Breadth-First Search Algorithm

Space complexity:

The space complexity is therefore proportional to the number of nodes at the deepest

level of the graph.

Given a graph with branching factor b (number of children at each node) and depth d, the

asymptotic space complexity is the number of nodes at the deepest level O(bd).

The space complexity can also be expressed as O (| E | + | V |), where | E | is the total

number of edges in G and | V | is the number of nodes or vertices.

Time Complexity:

In the worst case, breadth-first search has to traverse through all paths to all possible

nodes, thus the time complexity of this algorithm asymptotically approaches O(bd).

However, the time complexity can also be expressed as O(| E | + | V |), since every

vertex and every edge will be explored in the worst case.

Completeness:

Breadth-first search is said to be a complete algorithm because if there is a solution,

breadth-first search will find it regardless of the kind of graph. But in case of an infinite graph

where there is no possible solution, it will diverge.

Optimality:

Breadth-first search is optimal for a graph that has edges of equal length, since it always

returns the result with the fewest edges between the start node and the goal node.

we have weighted graphs that have costs associated with each edge, so the goal next to

the start does not have to be the cheapest goal available.

Applications of Breadth-First Search Algorithm

Breadth-first search can be used to solve many problems such as:

 Finding all connected components in a graph G.

 Finding all nodes within an individual connected component.

 Finding the shortest path between two nodes, u and v, of an unweighted graph.

 Finding the shortest path between two nodes, u and v, of a weighted graph.

Programming Example

2. Write a program to implement the breadth-first search algorithm.

#include <stdio.h>

#define MAX 10

void breadth_first_search(int adj[][MAX],int visited[],int start)

{

int queue[MAX],rear = –1,front =– 1, i;

queue[++rear] = start;

visited[start] = 1;

while(rear != front)

{

start = queue[++front];

if(start == 4)

printf("5\t");

else

printf("%c \t",start + 65);

for(i = 0; i < MAX; i++)

{

if(adj[start][i] == 1 && visited[i] == 0)

{

queue[++rear] = i;

visited[i] = 1;

}

}

}

}

int main()

{

int visited[MAX] = {0};

int adj[MAX][MAX], i, j;

printf("\n Enter the adjacency matrix: ");

for(i = 0; i < MAX; i++)

for(j = 0; j < MAX; j++)

scanf("%d", &adj[i][j]);

breadth_first_search(adj,visited,0);

return 0;

}

Output

Enter the adjacency matrix:

0 1 0 1 0

1 0 1 1 0

0 1 0 0 1

1 1 0 0 1

0 0 1 1 0

A B D C E

2. Depth First Algorithm

The depth-first search algorithm progresses by expanding the starting node of G and then going

deeper and deeper until the goal node is found, or until a node that has no children is

encountered.

When a dead-end is reached, the algorithm backtracks, returning to the most recent node that has

not been completely explored.

Algorithm

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set

its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its

STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that

are in the ready state (whose STATUS = 1) and

set their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

FIGURE 5.10 Graph G And Its Adjacency List

Example:

Consider the graph G given in. The adjacency list of G is also given. Suppose we want to print

all the nodes that can be reached from the node H (including H itself). One alternative is to use a

depth-first search of G starting at node H. The procedure can be explained here.

Solution:

(a) Push H onto the stack.

STACK: H

(b) Pop and print the top element of the STACK, that is, H. Push all the neighbours of H onto the

stack that are in the ready state. The STACK now becomes

PRINT: H STACK: E, I

(c) Pop and print the top element of the STACK, that is, I. Push all the neighbours of I onto the

stack that are in the ready state. The STACK now becomes

PRINT: I STACK: E, F

(d) Pop and print the top element of the STACK, that is, F. Push all the neighbours of F onto the

stack that are in the ready state. (Note F has two neighbours, C and H. But only C will be added,

as H is not in the ready state.) The STACK now becomes

PRINT: F STACK: E, C

e) Pop and print the top element of the STACK, that is, C. Push all the neighbours of C onto the

stack that are in the ready state. The STACK now becomes

PRINT: C STACK: E, B, G

(f) Pop and print the top element of the STACK, that is, G. Push all the neighbours of G onto the

stack that are in the ready state. Since there are no neighbours of G that are in the ready state,

no push operation is performed. The STACK now becomes

PRINT: G STACK: E, B

(g) Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the

stack that are in the ready state. Since there are no neighbours of B that are in the ready state,

no push operation is performed. The STACK now becomes

PRINT: B STACK: E

h) Pop and print the top element of the STACK, that is, E. Push all the neighbours of E onto the

stack that are in the ready state. Since there are no neighbours of E that are in the ready state,

no push operation is performed. The STACK now becomes empty.

PRINT: E STACK:

Since the STACK is now empty, the depth-first search of G starting at node H is complete and

the nodes which were printed are:

H, I, F, C, G, B, E

These are the nodes which are reachable from the node H.

Features of Depth-First Search Algorithm

Space complexity:

The space complexity of a depth-first search is lower than that of a breadth first search.

Time complexity:

The time complexity of a depth-first search is proportional to the number of vertices plus the

number of edges in the graphs that are traversed. The time complexity can be given as

(O(|V|+|E|)).

Completeness:

Depth-first search is said to be a complete algorithm. If there is a solution, depthfirst search will

find it regardless of the kind of graph. But in case of an infinite graph, where there is no possible

solution, it will diverge.

Applications of Depth-First Search Algorithm

Depth-first search is useful for:

 Finding a path between two specified nodes, u and v, of an unweighted graph.

 Finding a path between two specified nodes, u and v, of a weighted graph.

 Finding whether a graph is connected or not.

 Computing the spanning tree of a connected graph.

Programming Example:

3. Write a program to implement the depth-first search algorithm.

#include <stdio.h>

#define MAX 5

void depth_first_search(int adj[][MAX],int visited[],int start)

{

int stack[MAX];

int top = –1, i;

printf("%c–",start + 65);

visited[start] = 1;

stack[++top] = start;

while(top ! = –1)

{

start = stack[top];

for(i = 0; i < MAX; i++)

{

if(adj[start][i] && visited[i] == 0)

{

stack[++top] = i;

printf("%c–", i + 65);

visited[i] = 1;

break;

}

}

if(i == MAX)

top––;

}

}

int main()

{

int adj[MAX][MAX];

int visited[MAX] = {0}, i, j;

400 Data Structures Using C

printf("\n Enter the adjacency matrix: ");

for(i = 0; i < MAX; i++)

for(j = 0; j < MAX; j++)

scanf("%d", &adj[i][j]);

printf("DFS Traversal: ");

depth_first_search(adj,visited,0);

printf("\n");

return 0;

}

Output

Enter the adjacency matrix:

0 1 0 1 0

1 0 1 1 0

0 1 0 0 1

1 1 0 0 1

0 0 1 1 0

DFS Traversal: A –> C –> E –>

MINIMUM SPANNING TREES:

APPLICATIONS

 A spanning tree of a connected, undirected graph G is a sub-graph of G which is a tree

that connects all the vertices together

 A graph G can have many different spanning trees.

 We can assign weights to each edge (which is a number that represents how unfavourable

the edge is), and use it to assign a weight to a spanning tree by calculating the sum of the

weights of the edges in that spanning tree.

 A minimum spanning tree (MST) is defined as a spanning tree with weight less than or

equal to the weight of every other spanning tree. In other words, a minimum spanning

tree is a spanning tree that has weights associated with its edges, and the total weight of

the tree (the sum of the weights of its edges) is at a minimum.

Example: Consider an unweighted graph G given below (Fig. 5.11). From G, we can draw many

distinct spanning trees. Eight of them are given here. For an unweighted graph, every spanning

tree is a minimum spanning tree.

FIGURE 5.11 Unweighted Graph And Its Spanning Trees

EXAMPLE: Consider a weighted graph G shown in Fig. 5.12. From G, we can draw three

distinct spanning trees. But only a single minimum spanning tree can be obtained, that is, the one

that has the minimum weight (cost) associated with it. Of all the spanning trees given in Fig.

5.12, the one that is highlighted is called the minimum spanning tree, as it has the lowest cost

associated with it.

FIGURE 5.12 Weighted Graph And Its Spanning Trees.

APPLICATIONS FOR MINIMUM SPANNING TREES:

 MST’S is widely used for designing networks.

 MST’S are used to find airlane routes.

 MST’S are also used to find the cheapest way to connect terminals, such as cities,

electronic components or computers via roads, airlines, railways, wires or telephone lines.

 MST’S are applied in routing algorithms for finding the most efficient path.

We have two types of ALGORITHMS in Minimum Spanning Trees. They are:

1. PRIM’S ALGORITHM

2. KRUSKAL’S ALGORITHM

1. PRIM’S ALGORITHM

 Prim’s algorithm is a greedy algorithm that is used to form a minimum spanning tree for

a connected weighted undirected graph.

 In other words, the algorithm builds a tree that includes every vertex and a subset of the

edges in such a way that the total weight of all the edges in the tree is minimized.

For this, the algorithm maintains three sets of vertices which can be given as below:

 Tree vertices Vertices that are a part of the minimum spanning tree T.

 Fringe vertices Vertices that are currently not a part of T, but are adjacent to some tree

vertex.

 Unseen vertices Vertices that are neither tree vertices nor fringe vertices fall under this
category.

ALGORITHM

Step 1: Select a starting vertex

Step 2: Repeat Steps 3 and 4 until there are fringe vertices

Step 3: Select an edge e connecting the tree vertex and

fringe vertex that has minimum weight

Step 4: Add the selected edge and the vertex to the

minimum spanning tree T

[END OF LOOP]

Step 5: EXIT

EXAMPLE: Construct a minimum spanning tree of the graph given in Fig. 5.13

FIGURE 5.13

Step 1: Choose a starting vertex A.

Step 2: Add the fringe vertices (that are adjacent to A). The edges connecting the vertex and

fringe vertices are shown with dotted lines.

Step 3: Select an edge connecting the tree vertex and the fringe vertex that has the minimum

weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge

connecting A and C has less weight, add C to the tree. Now C is not a fringe vertex but a tree

vertex.

Step 4: Add the fringe vertices (that are adjacent to C).

Step 5: Select an edge connecting the tree vertex and the fringe vertex that has the minimum

weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge

connecting C and B has less weight, add B to the tree. Now B is not a fringe vertex but a tree

vertex.

Step 6: Add the fringe vertices (that are adjacent to B).

Step 7: Select an edge connecting the tree vertex and the fringe vertex that has the minimum

weight and add the selected edge and the vertex to the minimum spanning tree T. Since the

edge connecting B and D has less weight, add D to the tree. Now D is not a fringe vertex but a

tree vertex.

Step 8: Note, now node E is not connected, so we will add it in the tree because a minimum

spanning tree is one in which all the n nodes are connected with n–1 edges that have minimum

weight. So, the minimum spanning tree can now be given as,

2. KRUSKAL’S ALGORITHM

 Kruskal’s algorithm is used to find the minimum spanning tree for a connected weighted

graph.

 The algorithm aims to find a subset of the edges that forms a tree that includes every

vertex. The total weight of all the edges in the tree is minimized.

 However, if the graph is not connected, then it finds a minimum spanning forest. Note

that a forest is a collection of trees. Similarly, a minimum spanning forest is a collection

of minimum spanning trees.

 Kruskal’s algorithm is an example of a greedy algorithm, as it makes the locally optimal

choice at each stage with the hope of finding the global optimum.

ALGORITHM

Step 1: Create a forest in such a way that each graph is a separate

tree.

Step 2: Create a priority queue Q that contains all the edges of the

graph.

Step 3: Repeat Steps 4 and 5 while Q is NOT EMPTY

Step 4: Remove an edge from Q

Step 5: IF the edge obtained in Step 4 connects two different trees,

then Add it to the forest (for combining two trees into one

tree).

ELSE

Discard the edge

Step 6: END

EXAMPLE: Apply Kruskal’s algorithm on the graph given in Fig. 5.14.

Initially, we have F = {{A}, {B}, {C}, {D}, {E}, {F}}

MST = {}

Q = {(A, D), (E, F), (C, E), (E, D), (C, D), (D, F),

(A, C), (A, B), (B, C)}

FIGURE 5.14

Step 1: Remove the edge (A, D) from Q and make the following changes:

F = {{A, D}, {B}, {C}, {E}, {F}}

MST = {A, D}

Q = {(E, F), (C, E), (E, D), (C, D),

(D, F), (A, C), (A, B), (B, C)}

Step 2: Remove the edge (E, F) from Q and make the following changes:

F = {{A, D}, {B}, {C}, {E, F}}

MST = {(A, D), (E, F)}

Q = {(C, E), (E, D), (C, D), (D, F),

(A, C), (A, B), (B, C)}

Step 3: Remove the edge (C, E) from Q and make the following changes:

F = {{A, D}, {B}, {C, E, F}}

MST = {(A, D), (C, E), (E, F)}

Q = {(E, D), (C, D), (D, F), (A, C),

(A, B), (B, C)}

Step 4: Remove the edge (E, D) from Q and make the following changes:

F = {{A, C, D, E, F}, {B}}

MST = {(A, D), (C, E), (E, F), (E, D)}

Q= {(C, D), (D, F), (A, C), (A, B), (B, C)}

Step 5: Remove the edge (C, D) from Q. Note that this edge does not connect different trees, so

simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.

Therefore,

F = {{A, C, D, E, F}, {B}}

MST = {(A, D), (C, E), (E, F), (E, D)}

Q = {(D, F), (A, C), (A, B), (B, C)}

Step 6: Remove the edge (D, F) from Q. Note that this edge does not connect different trees, so

simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.

F = {{A, C, D, E, F}, {B}}

MST = {(A, D), (C, E), (E, F), (E, D)}

Q = {(A, C), (A, B), (B, C)}

Step 7: Remove the edge (A, C) from Q. Note that this edge does not connect different trees, so

simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.

F = {{A, C, D, E, F}, {B}}

MST = {(A, D), (C, E), (E, F), (E, D)}

Q = {(A, B), (B, C)}

Step 8: Remove the edge (A, B) from Q and make the following changes:

F = {A, B, C, D, E, F}

MST = {(A, D), (C, E), (E, F), (E,D),

(A, B)}

Q = {(B, C)}

Step 9: The algorithm continues until Q is empty. Since the entire forest has become one tree, all

the remaining edges will simply be discarded. The resultant MS can be given as shown below

F = {A, B, C, D, E, F}

MST = {(A, D), (C, E), (E, F), (E,D),

(A, B)}

Q = {}

PROGRAMMING EXAMPLE:

5. Write a program which finds the cost of a minimum spanning tree.

#include<stdio.h>

#include<conio.h>

#define MAX 10

int adj[MAX][MAX], tree[MAX][MAX], n;

void readmatrix()

{

int i, j;

printf(“\n Enter the number of nodes in the Graph : “);

scanf(“%d”, &n);

printf(“\n Enter the adjacency matrix of the Graph”);

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

scanf(“%d”, &adj[i][j]);

}

int spanningtree(int src)

{

int visited[MAX], d[MAX], parent[MAX];

int i, j, k, min, u, v, cost;

for (i = 1; i <= n; i++)

{

d[i] = adj[src][i];

visited[i] = 0;

parent[i] = src;

}

visited[src] = 1;

cost = 0;

k = 1;

for (i = 1; i < n; i++)

{

min = 9999;

for (j = 1; j <= n; j++)

{

if (visited[j]==0 && d[j] < min)

{

min = d[j];

u = j;

cost += d[u];

}

}

visited[u] = 1;

//cost = cost + d[u];

tree[k][1] = parent[u];

tree[k++][2] = u;

for (v = 1; v <= n; v++)

if (visited[v]==0 && (adj[u][v] < d[v]))

{

d[v] = adj[u][v];

parent[v] = u;

}

}

return cost;

}

void display(int cost)

{

int i;

printf(“\n The Edges of the Mininum Spanning Tree are”);

for (i = 1; i < n; i++)

printf(“ %d %d \n”, tree[i][1], tree[i][2]);

printf(“\n The Total cost of the Minimum Spanning Tree is : %d”, cost);

}

main()

{

int source, treecost;

readmatrix();

printf(“\n Enter the Source : “);

scanf(“%d”, &source);

treecost = spanningtree(source);

display(treecost);

return 0;

}

Output

Enter the number of nodes in the Graph : 4

Enter the adjacency matrix : 0 1 1 0

0 0 0 1

0 1 0 0

1 0 1 0

Enter the source : 1

The edges of the Minimum Spanning Tree are 1 4

4 2

2 3

The total cost of the Minimum Spanning Tree is : 1

Dijkstra’s Algorithm

Dijkstra’s algorithm, given by a Dutch scientist Edsger Dijkstra in 1959, is used to find the

shortest path tree. This algorithm is widely used in network routing protocols, most notably IS-IS

and OSPF (Open Shortest Path First).

Given a graph G and a source node A, the algorithm is used to find the shortest path (one having

the lowest cost) between A (source node) and every other node. Moreover, Dijkstra’s algorithm

is also used for finding the costs of the shortest paths from a source node to a destination node.

For example, if we draw a graph in which nodes represent the cities and weighted edges

represent the driving distances between pairs of cities connected by a direct road, then Dijkstra’s

algorithm when applied gives the shortest route between one city and all other cities.

ALGORITHM

 Dijkstra’s algorithm is used to find the length of an optimal path between two nodes in a

graph.

 The term optimal can mean anything, shortest, cheapest, or fastest.

 If we start the algorithm with an initial node, then the distance of a node Y can be given

as the distance from the initial node to that node.

1. Select the source node also called the initial node

2. Define an empty set N that will be used to hold nodes to which a shortest path has been found.

3. Label the initial node with , and insert it into N.

4. Repeat Steps 5 to 7 until the destination node is in N or there are no more labelled nodes in N.

5. Consider each node that is not in N and is connected by an edge from the newly inserted node.

6. (a) If the node that is not in N has no label then SET the label of the node = the label of the

newly inserted node + the length of the edge.

(b) Else if the node that is not in N was already labelled, then SET its new

label = minimum (label of newly inserted vertex + length of edge, old label)

7. Pick a node not in N that has the smallest label assigned to it and add it

to N.

Dijkstra’s algorithm labels every node in the graph where the labels represent the distance

(cost) from the source node to that node.

There are two kinds of labels: temporary and permanent.

Temporary labels are assigned to nodes that have not been reached, while permanent labels are

given to nodes that have been reached and their distance (cost) to the source node is known. A

node must be a permanent label or a temporary label, but not both.

The execution of this algorithm will produce either of the following two results:

1. If the destination node is labelled, then the label will in turn represent the distance from the

source node to the destination node.

2. If the destination node is not labelled, then there is no path from the source to the destination

node.

EXAMPLE:

Consider the graph G given in Fig. 5.14. Taking D as the initial node, execute the Dijkstra’s

algorithm on it.

FIGURE 5.14

Step 1: Set the label of D = 0 and N = {D}.

Step 2: Label of D = 0, B = 15, G = 23, and F = 5. Therefore, N = {D, F}.

Step 3: Label of D = 0, B = 15, G has been re-labelled 18 because minimum

(5 + 13, 23) = 18, C has been re-labelled 14 (5 + 9). Therefore, N = {D,

F, C}.

Step 4: Label of D = 0, B = 15, G = 18. Therefore, N = {D, F, C, B}.

Step 5: Label of D = 0, B = 15, G = 18 and A = 19 (15 + 4). Therefore, N =

{D, F, C, B, G}.

Step 6: Label of D = 0 and A = 19. Therefore, N = {D, F, C, B, G, A}

Note that we have no labels for node E; this means that E is not reachable from D. Only the

nodes that are in N are reachable from B.

The running time of Dijkstra’s algorithm can be given as O(|V|2+|E|)=O(|V|2) where V is the set

of vertices and E in the graph.

Warshall’s Algorithm

If a graph G is given as G=(V, E), where V is the set of vertices and E is the set of edges, the

path matrix of G can be found as, P = A + A2 + A3 + ... + An.

This is a lengthy process, so Warshall has given a very efficient algorithm to calculate the path

matrix. Warshall’s algorithm defines matrices P0, P1, P2, º, Pn.

Path Matrix Entry

 This means that if P0[i][j] = 1, then there exists an edge from node vi to vj.

 If P1[i][j] = 1, then there exists an edge from vi to vj that does not use any other vertex

except v1.

Hence, the path matrix Pn can be calculated with the formula given as:

Pk[i][j] = Pk–1[i][j] V (Pk–1[i][k] ^ Pk–1[k][j])

where V indicates logical OR operation and ^ indicates logical AND operation.

ALGORITHM

Step 1: [the Path Matrix] Repeat Step 2 for I = to n-1,

where n is the number of nodes in the graph

Step 2: Repeat Step 3 for J = to n-1

Step 3: IF A[I][J] = , then SET P[I][J] =

ELSE P[I][J] = 1

[END OF LOOP]

[END OF LOOP]

Step 4: [Calculate the path matrix P] Repeat Step 5 for K = to n-1

Step 5: Repeat Step 6 for I = to n-1

Step 6: Repeat Step 7 for J= to n-1

Step 7: SET P [I][J] = P [I][J] V (P [I][K]

P [K][J])

Step 8: EXIT

EXAMPLE:

Consider the graph in Fig. 13.39 and its adjacency matrix A. We can straightaway calculate the

path matrix P using the Warshall’s algorithm. The path matrix P can be given in a single step as:

GRAPH G AND ITS PATH MATRIX

PROGRAMMING EXAMPLE

6. Write a program to implement Warshall’s algorithm to find the path matrix.

#include <stdio.h>

#include <conio.h>

void read (int mat[5][5], int n);

void display (int mat[5][5], int n);

void mul(int mat[5][5], int n);

int main()

{

int adj[5][5], P[5][5], n, i, j, k;

clrscr();

printf("\n Enter the number of nodes in the graph : ");

scanf("%d", &n);

printf("\n Enter the adjacency matrix : ");

read(adj, n);

clrscr();

printf("\n The adjacency matrix is : ");

display(adj, n);

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

if(adj[i][j] == 0)

P[i][j] = 0;

else

P[i][j] = 1;

}

}

for(k=0; k<n;k++)

{

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

P[i][j] = P[i][j] | (P[i][k] & P[k][j]);

}

}

printf("\n The Path Matrix is :");

display (P, n);

getch();

return 0;

}

void read(int mat[5][5], int n)

{

int i, j;

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

printf("\n mat[%d][%d] = ", i, j);

scanf("%d", &mat[i][j]);

}

}

}

void display(int mat[5][5], int n)

{

int i, j;

for(i=0;i<n;i++)

printf("\n");

for(j=0;j<n;j++)

printf("%d\t", mat[i][j]);

}

}

Output

The adjacency matrix is

0 1 1 0

0 0 1 1

0 0 0 1

1 1 0 0

Graphs 417

The Path Matrix is

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Transitive Closure of a Directed Graph

Definition

For a directed graph G = (V,E), where V is the set of vertices and E is the set of edges, the

transitive closure of G is a graph G* = (V,E*). In G*, for every vertex pair v, w in V there is an

edge (v, w) in E* if and only if there is a valid path from v to w in G.

Where and Why is it Needed?

(a) A graph G and its

(b) transitive closure G*

Finding the transitive closure of a directed graph is an important problem in the following

computational tasks:

 Transitive closure is used to find the reachability analysis of transition networks

representing distributed and parallel systems.I

 It is used in the construction of parsing automata in compiler construction.

 Recently, transitive closure computation is being used to evaluate recursive database

queries (because almost all practical recursive queries are transitive in nature).

ALGORITHM

Transitive_Closure(A, t, n)

Step 1: SET i=1, j=1, k=1

Step 2: Repeat Steps 3 and 4 while i<=n

Step 3: Repeat Step 4 while j<=n

Step 4: IF (A[i][j] = 1)

SET t[i][j] = 1

ELSE

SET t[i][j] =

INCREMENT j

[END OF LOOP]

INCREMENT i

[END OF LOOP]

Step 5: Repeat Steps 6 to 11 while k<=n

Step 6: Repeat Steps 7 to 1 while i<=n

Step 7: Repeat Steps 8 and 9 while j<=n

Step 8: SET t[i,j] = t[i][j] V (t[i][k] t[k][j])

Step 9: INCREMENT j

[END OF LOOP]

Step 10 : INCREMENT i

[END OF LOOP]

Step 11: INCREMENT k

[END OF LOOP]

Step 12: END

	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
	Course Objectives:
	Course Outcomes:
	UNIT I
	UNIT II
	UNIT III
	UNIT IV
	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA (1)
	UNIT V
	Text Books:
	Reference Books:
	e-Resources:
	Primitive and Non-primitive Data Structures:
	Linear and Non-linear Structures:

	limitations:
	Advantage of using ADTs
	Structure of an Algorithm:

	Example 1: Sum of the elements in an Array
	Example 1: Sum of three numbers
	Example 2: Sum of Array values
	What to Analyze in an algorithm:
	Example:
	F(n)=n if n<=1
	Algorithm:
	Categories of Sorting:
	Example 1:
	Algorithm: (1)
	SELECTION SORT(ARR, N)
	Algorithm for finding minimum element in the list.
	Example 1:
	Time Complexity:
	Example 1: (1)
	BUBBLE SORT(ARR, N)
	Time Complexity: (1)
	Example:
	Implementation Recursive Merge Sort:
	MergeSort Algoritm:
	Two- Way Merge Sort:

	Unit – III
	QUEUE:
	Operations performed on Queue:

	Using Arrays:
	Example: Enqueue()
	TYPES OF QUEUES:
	CIRCULAR QUEUEs:
	Queue is not full:
	Queue is full:
	Let's understand the enqueue and dequeue operation through the diagrammatic representation.

	DEQUE:
	Array Representation of a Priority Queue:
	Insertion:
	Deletion:

	Multiple Queues:-
	Example:

	Stack:-
	Algorithm for PUSH operation:
	Algorithm for POP operation
	Algorithm for PEEK operation

	Reversing list:
	Factorial Calculation:
	Evaluation of Expressions:-
	Example: x = a / b – c + d * e – a * c
	Conversion of INFIX to POSTFIX:
	DEFINATION:
	FIGURE 5.1
	FIGURE 5.2

	2. REPRESENTATION OF GRAPHS
	ADJACENCY MATRIX REPRESENTATION
	FIGURE 5.3 Adjacency Matrix Entry
	Figure 5.4 shows some graphs and their corresponding adjacency matrices.
	FIGURE 5.5 Directed graph with its adjacency matrix
	FIGURE 5.6 Path Matrix Entry

	ADJACENCY LINKED LIST REPRESEENTATION
	FIGURE 5.7 Graph G and its adjacency list
	PROGRAMMING EXAMPLE
	Output

	3.GRAPH TRAVERSALS
	1. Breadth-First Search Algorithm
	ALGORITHM
	FIGURE 5.9 Graph G And Its Adjacnecy List
	SOLUTION:
	Space complexity:
	Time Complexity:
	Completeness:
	Optimality:

	Applications of Breadth-First Search Algorithm
	Programming Example
	Output
	2. Depth First Algorithm
	Algorithm
	FIGURE 5.10 Graph G And Its Adjacency List
	Solution:
	Features of Depth-First Search Algorithm Space complexity:
	Time complexity:
	Completeness:
	Applications of Depth-First Search Algorithm

	Programming Example:
	Output

	APPLICATIONS
	FIGURE 5.11 Unweighted Graph And Its Spanning Trees
	FIGURE 5.12 Weighted Graph And Its Spanning Trees.

	1. PRIM’S ALGORITHM
	ALGORITHM
	FIGURE 5.13

	2. KRUSKAL’S ALGORITHM
	ALGORITHM
	FIGURE 5.14
	PROGRAMMING EXAMPLE:
	Output

	Dijkstra’s Algorithm
	ALGORITHM
	EXAMPLE:
	FIGURE 5.14

	Warshall’s Algorithm
	Path Matrix Entry
	Pk[i][j] = Pk–1[i][j] V (Pk–1[i][k] ^ Pk–1[k][j])

	ALGORITHM
	EXAMPLE:
	GRAPH G AND ITS PATH MATRIX
	Output

	Transitive Closure of a Directed Graph
	Definition
	(b) transitive closure G*
	ALGORITHM

