LECTURE NOTES
ON

DATA STURCTURES

ACADEMIC YEAR 2021-22

| B.Tech —11 SEMESTER (R20)

M.V.Ramana ,Associate Professor

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

V S M COLLEGE OF ENGINEERING

RAMCHANDRAPURAM

E.G DISTRICT -533255



VSM COLLEGE OF ENGINEERING

RAMACHANDRAPRUM-533255

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

Course Title Year-Sem Branch p er(i:ooc;lt/?/(\:/teek Sections
Data Structures 1-2 Computer Science and 5
Engineering
COURSE OUTCOMES: After completing this course a student will be able to:
» Summarize the properties, interfaces, and behaviors of basic abstract data types
» Discuss the computational efficiency of the principal algorithms for sorting & searching
» Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing programs
> Demonstrate different methods for traversing trees
Uni Number :
' foucoms o | ot | B | et
ite periods ds nce
m
No.
Data Structures, SOI’tII’]g and
Searching
1.1 |Data Structures - Definition, 2
Classification of Data Structures
1.2 |Operations on Data Structures, 2
Abstract Data Type (ADT)
CO 2: Discuss the 1.3 |Preliminaries of algorithms. Timel
1 computational and Space complexity TLT | Chak &
efficiency of the 1.4 |Linear search, Binary search 1 16 Talk
principal algorithms for : i 2, R1
sorting & searching 1.5 |Fibonacci search 1
1.6 [Insertion sort, Selection sort 2
1.7 |Bubble sort, quick sort 2
1.8] Problems on above topics 2
1.9 Radix Sort and Merge Sort 2
Linked List
2.1 Introduction, Single linked list, 1
Representation of Linked list
2.2 | Operations on Single Linked list- 2
Insertion, Deletion, Search and
Traversal
2.3| Reversing Single Linked list, 1
CO 3: Use arrays, Applications on SLL T1,T2, Chalk &
2 lrecords, linked 2.4| Polynomial Expression 2 14 Talk
structures, stacks, Representation
ueues, trees, and 2.5| Addition of Polynomials 1
Graphs in writing 2.6 | Multiplication of Polynomials 1
programs 2.7 Sparse Matrix Representation 1
2.8| Advantages and Disadvantages of 1




Single Linked list

2.9| Double Linked list-Insertion, 4
Deletion, Circular Linked list-
Insertion, Deletion
Stacks and Queues
3.1 | Introduction to Queues, 5
Representation of Queues-using
Arrays and using Linked list
3.2 | Implementation of Queues-using 1
Arrays
3.3| Implementation of Queues-using 1
CO 3: Use arrays, Linked List Chalk &
records, linked 3.4 /| Application of Queues Circular 2 14 |T1,T2, Talk
structures, stacks, Queues, Deques, Priority Queues, R2
queues, trees, and Multiple Queues
Graphs in writing 3.5| Introduction to  Stacks, Array 1
programs Representation of Stacks
3.6 | Operations on Stacks, Linked list 2
Representation of Stacks
3.7| Operations on  Linked  Stack, 2
Applications
3.8| Infix to Postfix  Conversion, 3
Evaluating Postfix Expressions
Trees
4.1 [Basic Terminology in Trees 1
4.2 | Binary Trees Properties, 2
Representation of Binary Trees using
CO4: Demonstrate Arrays and Linked lists
different methods for | 4 3| Binary Search Trees- Basic Concepts, 3 Chalk &
traversing trees BST Operations: Insertion, Deletion, 10 ([T1, R1 [Talk,ppt
Tree Traversals
4.4 | Heap Tree and Heap Sort 2
4.5 Balanced Binary Trees- AVL Trees, 2
Insertion, Deletion and Rotations
Graphs
5.1 | Basic Concepts, Representations of 1
Graphs
CO 3: Use arrays, 5.2 | Graph Traversals (BFT & DFT) 1
records, linked '
structures, stacks, 6 [T3. R7| Chalk &
queues, trees, and 5.3 Applications- Minimum Spanning 1 Talk
Graphs in writing Tree Using Prims & Kruskals
programs Algorithm
5.4 | Dijkstra’s shortest path 1
5.5 Transitive closure, Warshall’s 2
Algorithm
TOTAL| 60




LIST OF TEXT BOOKS AND AUTHORS

Text Books:

1Data Structures Using C. 2nd Edition.Reema Thareja, Oxford.
2) Data Structures and algorithm analysis in C, 2nded, Mark Allen Weiss.

Reference Books:

1) Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities Press.

2) Data Structures: A PseudoCode Approach, 2/e, Richard F .Gilberg, Behrouz A. Forouzon, Cengage.
3) Data Structures with C, Seymour Lipschutz TMH

| /

&
4\

Facufty Member Hea epartme PRINCIRAL



R-20 Syllabus for CSE, INTUK w. e. f. 2020 — 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
KAKINADA - 533003, Andhra Pradesh, India

s);"mnw\‘,}‘x

e DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
LI T| P |C
| Year — Il Semester 310 03

DATA STRUCTURES

Course Objectives:
The objective of the course is to
« Introduce the fundamental concept of data structures and abstract data types
o Emphasize the importance of data structures in developing and implementing efficient
algorithms
o Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are
represented in memory and used by algorithms
Course Outcomes:
After completing this course a student will be able to:
e Summarize the properties, interfaces, and behaviors of basic abstract data types
e Discuss the computational efficiency of the principal algorithms for sorting &
searching
e Use arrays, records, linked structures, stacks, queues, trees, and Graphs in writing
programs
e Demonstrate different methods for traversing trees

UNIT I

Data Structures - Definition, Classification of Data Structures, Operations on Data Structures,
Abstract Data Type (ADT), Preliminaries of algorithms. Time and Space complexity.
Searching - Linear search, Binary search, Fibonacci search.

Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix
sort), merging (Merge sort) algorithms.

UNIT II

Linked List: Introduction, Single linked list, Representation of Linked list in memory,
Operations on Single Linked list-Insertion, Deletion, Search and Traversal ,Reversing Single
Linked list, Applications on Single Linked list- Polynomial Expression Representation
,/Addition and Multiplication, Sparse Matrix Representation using Linked List, Advantages
and Disadvantages of Single Linked list, Double Linked list-Insertion, Deletion, Circular
Linked list-Insertion, Deletion.

UNIT I

Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked
list, Implementation of Queues-using Arrays and using Linked list, Application of Queues-
Circular Queues, Deques, Priority Queues, Multiple Queues.

Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked
list Representation of Stacks, Operations on Linked Stack, Applications-Reversing list,
Factorial Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.

UNIT IV

Trees: Basic Terminology in Trees, Binary Trees-Properties, Representation of Binary Trees
using Arrays and Linked lists. Binary Search Trees- Basic Concepts, BST Operations:
Insertion, Deletion, Tree Traversals, Applications-Expression Trees, Heap Sort, Balanced
Binary Trees- AVL Trees, Insertion, Deletion and Rotations.



R-20 Syllabus for CSE, INTUK w. e. f. 2020 — 21

=@ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
)$ KAKINADA - 533 003, Andhra Pradesh, India

Q

Z
~’VER5‘

RSO

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT V

Graphs: Basic Concepts, Representations of Graphs-Adjacency Matrix and using Linked list,
Graph Traversals (BFT & DFT), Applications- Minimum Spanning Tree Using Prims &
Kruskals Algorithm, Dijkstra’s shortest path, Transitive closure, Warshall’s Algorithm.

Text Books:
1) Data Structures Using C. 2" Edition.Reema Thareja, Oxford.
2) Data Structures and algorithm analysis in C, 2"ed, Mark Allen Weiss.

Reference Books:
1) Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities
Press.
2) Data Structures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A.
Forouzon, Cengage.
3) Data Structures with C, Seymour Lipschutz TMH

e-Resources:
1) http://algs4.cs.princeton.edu/home/
2) https://faculty.washington.edu/jstraub/dsa/Master_2_7a.pdf



http://algs4.cs.princeton.edu/home/

Unit—1

Svllabus:

+ Data Structures - Definition, Classification of Data Structures, Operations on Data Structures, Abstract

Data Type (ADT), Preliminaries of algorithms. Time and Space complexity.

+ Searching - Linear search, Binary search, Fibonacci search.

» Sorting- Insertion sort, Selection sort, Exchange (Bubble sort, quick sort), distribution (radix sort), merging

(Merge sort) algorithms.

INTRODUCTION:

e Adata structure is a particular way of storing and organizing data in a computer so that it can be

used efficiently.

e Some common examples of data structures are arrays, linked lists, queues, stacks, binary trees,

and hash tables

e Today computer programmers do not write programs just to solve a problem but to write an

efficient program.

e When selecting a data structure to solve a problem, the following steps must be performed.

1. Analysis of the problem to determine the basic operations that must be supported.

2. Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

e Thetermdata means a value or set of values. It specifies either the value of a variable or a constant

(e.g., marks of students, name of an employee, address of a customer, value of pi, etc.).

e Avrecord is a collection of data items. For example, the name, address, course, and marks obtained

are individual data items. But all these data items can be grouped together to form a record.

e Afile isa collection of related records. For example, if there are 60 students in a class, then there

are 60 records of the students. All these related records are stored in a file.

CLASSIFICATION OF DATA STRUCTURES:

e Data structures are generally categorized into two classes: primitive and non-primitive data

structures.
Primitive and Non-primitive Data Structures:

e Primitive data structures are the fundamental
data types which are supported by a
programming language. Some basic data types
are integer, real, character, and boolean. The
terms ‘data type, basic data type’, and ‘primitive
data type’ are often used interchangeably.

Types of Data Structure
r l N
! !
Primitive Data Non-Primitive Data
Structure Structure

3

{

Integer

"\
v oo ‘ v
Float Character Boolean Linear Data Non-Linear
Structure Data Structure
) ! A
i voov v v
Arrays  Linked List Stack Queue Trees Graphs

Fig. Types of Data Structure




e Non-primitive data structures are those data structures which are created using primitive data
structures. Examples of such data structures include linked lists, stacks, trees, and graphs.

o Non-primitive data structures can further be classified into two categories: linear and non-linear
data structures.

Linear and Non-linear Structures:
e If the elements of a data structure are stored in a linear or sequential order, then it is a linear data
structure.
o Examples include arrays, linked lists, stacks, and queues.
o Linear data structures can be represented in memory in two different ways. One way is to
have to a linear relationship between elements by means of sequential memory locations.
The other way is to have a linear relationship between elements by means of links.

e If the elements of a data structure are not stored in a sequential order, then it is a non-linear data
structure.

o The relationship of adjacency is not maintained between elements of a non-linear data
structure. Examples include trees and graphs.

Arrays:

e An array is a collection of similar data elements. These data elements have the same data type.
The elements of the array are stored in consecutive memory locations and are referenced by an
index (also known as the subscript).

e InC, arrays are declared using the following syntax: datatype name|[size];

Ex: int marks[10];

1 st 2r|d 3rd 41‘1' 51‘1' ﬁ_ﬂ' Tﬂ' 81‘1' gﬂ' 1 Dﬂ'
element | element | element | element | element | element | element | element | element | element

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]
limitations:
o Arrays are of fixed size.
o Data elements are stored in contiguous memory locations which may not be always available.

o Insertion and deletion of elements can be problematic because of shifting of elements from their
positions.




Linked Lists:

linked list is a dynamic data structure in which elements (called nodes) form a sequential list.
In a linked list, each node is allocated space as it is added to the list. Every node in the list points
to the next node in the list.
Every node contains the following
The value of the node or any other data that corresponds to that node
A pointer or link to the next node in the list

Head Next Next Next
» Dataltems : Data ltems > Data ltems

~TT

NULL
The first node in the list is pointed by Head/Start/First. The last node in the list contains a NULL
pointer to indicate that it is the end or tail of the list.

Advantage: Easier to insert or delete data elements

Disadvantage: Slow search operation and requires more memory space

Stacks:

A stack is a linear data structure in which insertion and deletion of elements are done at only one
end, which is known as the top of the stack. oueh o
Stack is called a last-in, first-out (LIFO) X ﬁ
structure because the last element which is _\ top
added to the stack is the first element which

is deleted from the stack. Last In First Out (LIFO)
Stacks can be implemented using arrays or

linked lists.

Every stack has a variable top associated

Stack

with it. Top is used to store the address of

the topmost element of the stack.

It is this position fromwhere the element will be added or deleted. There is another variable MAX,
which is used to store the maximum number of elements that the stack can store.

Iftop = NULL, then it indicates that the stack is emptyand if top = MAX-1, then the stack is full.

A stack supports three basic operations: push, pop, and peep. The push operation adds an element
to the top of the stack. The pop operation removes the element from the top of the stack. And the

peep operation returns the value of the topmost element of the stack (without deleting it).




Queues:

A Queue is a linear data structure in which insertion can be done at rear end and deletion of

elements can be dome at front end.

A queue is a first-in, first-out (FIFO) data

structure in which the element that is Deletion Addition
inserted first is the first one to be taken - Queue s

out.

Like stacks, queues can be implemented by using either arrays or linked lists.

Front Rear
12 9 7 18 14 36
0 1 2 3 4 5 6 7 8 9

Insert element into the Queue:

Front Rear
12 9 7 18 14 36 45
0 1 2 3 4 5 6 7 8 9

Delete element from Queue:

Trees:

Front Rear
9 7 18 14 36 45
0 1 2 3 4 5 6 7 8 9

A queue is full when rear = MAX — 1, An underflow condition occurs when we try to delete an
element from a queue that is already empty. If front = NULL and rear = NULL, then there is no

element in the queue.

A tree is a non-linear data structure which consists of a collection of nodes arranged in a
hierarchical order.

One of the nodes is designated as the root node, and the remaining nodes can be partitioned into
disjoint sets such that each set is a sub-tree of the root

The simplest form of a tree is a binary tree. A binary tree

consists of a root node and left and right sub-trees, where both FS\
sub-trees are also binary trees. /1\
Each node contains a data element, a left pointer which points T}z . ' 3T2
to the left sub-tree, and a right pointer which points to the right \7’< Z'

/4 (’5\ /6 | 7\

sub-tree. = & Fg_& &
The root element is the topmost node which is pointed by a /'5 (9) 10) (1) (12)
‘root” pointer. If root = NULL then the tree is empty.




Here R is the root node and T1 and T2 are the left and right subtrees of R. If T1 is non-empty,
then T1 is said to be the left successor of R. Likewise, if T2 is non-empty, then it is called the
right successor of R.

Advantage: Provides quick search, insert, and delete operations

Disadvantage: Complicated deletion algorithm

Graphs:

A graph is a non-linear data structure which is a collection of vertices (also called nodes) and

edges that connect these vertices.

A node in the graph may represent a city and the edges connecting

(c)
the nodes can represent roads. —/

A graph can also be used to represent a computer network where

the nodes are workstations and the edges are the network

connections.
Graphs do not have any root node. Rather, every node in the graph can be connected with every
another node in the graph.

Advantage: Best models real-world situations

Disadvantage: Some algorithms are slow and very complex

OPERATIONS ON DATA STRUCTURES:

This section discusses the different operations that can be performed on the various data structures
previously mentioned.

Traversing It means to access each data item exactly once so that it can be processed. For example,
to print the names of all the students in a class.

Searching It is used to find the location of one or more data items that satisfy the given constraint.
Such a data item may or may not be present in the given collection of data items. For example, to
find the names of all the students who secured 100 marks in mathematics.

Inserting It is used to add new data items to the given list of data items. For example, to add the
details of a new student who has recently joined the course.

Deleting It means to remove (delete) a particular data item from the given collection of data items.
For example, to delete the name of a student who has left the course.

Sorting Data items can be arranged in some order like ascending order or descending order
depending on the type of application. For example, arranging the names of students in a class in
an alphabetical order, or calculating the top three winners by arranging the participants’ scores in
descending order and then extracting the top three.

Merging Lists of two sorted data items can be combined to forma single list of sorted data items.




L ABSTRACT DATATYPE: ]

e Anabstract data type (ADT) is a data structure, focusing on what it does and ignoring how it does
its job. (or) Abstract Data type (ADT) is a
type (or class) for objects whose behavior is

defined by a set of value and a set of

operatlons. List ADT — \ ——= | Queue ADT

e Ex: stacks ADT and queues ADT. the User  gagmige .
is concerned only with the type of data and [N Stack ADT - e
the operations that can be performed on it. | e push() I

e We can implement both these ADTSs using pop)

. . peep()
an array or a linked list.

Advantage of using ADTs
e Modification of a program is simple, For example, if you want to add a new field to a student’s
record to keep track of more information about each student, then it will be better to replace an
array with a linked structure to improve the program’s efficiency.
e In such a scenario, rewriting every procedure that uses the changed structure is not desirable.
Therefore, a better alternative is to separate the use of a data structure from the details of its
implementation.

{ PRELIMINARIES OF ALGORITHM: ]

e Algorithm is step by step logical procedure for solving a problem.
¢ In Algorithm each step is called Instruction.
e An Algorithm is any well-defined computational procedure that take some values as inputs and
produce some values as output.
e An Algorithm is a sequence of computational steps that transform input into output.
e An Algorithm has 5 basic properties:
1. Input:An Algorithm has take ‘0’ or more number of inputs that can be supplied as externally.
2. Output: An Algorithm must produce at least one output.
3. Definiteness: Each instruction in the algorithm must be clear.
4. Finiteness: An algorithm must terminate after a finite number of steps.
5. Effectiveness: Each operation should be effective. i.e the operations must be terminate after
finite amount of time.
Structure of an Algorithm:
1. Algorithm is a procedure consisting of heading and body. In body part we are writing
statements and in the head part we are writing the following.

Syntax: Algorithm name_of Algo (param1,paramz2, ...);




2. The beginning and ending of block should be indicated by ‘{ and ‘}’ or ‘start’ and ‘end’
respectively.

3. Everystatement in the algorithm should be end with semicolon (;).

4. Single line

comments are

Algnnthm even%rljd()

{ 5

D
i declare [1 *—{15},/7’

written using </’

as beginning of lD
comments. 1 if A[‘l ]%2 == 0 then '7
5. The identifier print "Given number is Even”;

head&body

should begin else

with  character print "Given number is Odd";

and it may be }"5'],.,- \51:6

combination of
alpha numeric.
6. Assignment operator (:=) we can use as follows
Variable := expression (or) value;
7. There are other type of operators such as Boolean operators (TRUE/FALSE), logical operators
(AND,OR,NOT) and relational operators (<,>,<=,>=,.....)
8. The input and output we can write it as read and print respectively.
9. The Array index are stored with in [ ] brackets. The index of array starts from ‘0’ to ‘N-1".
Syntax: datatype Aray_name][size];
10. The conditional statements such as if-then (or) if-then-else are written as follows.
if(condition) then statements;
if(condition) then
statements;
else

statements;

TIME AND SPACE COMPLEXITY:

e The efficiency of an algorithm can be computed by measuring the performance of an algorithm.
We can measure the performance of an algorithm in Two(2) ways.
1. Time Complexity
2. Space Complexity

1. Time Complexity:
e The time complexity of an algorithm is the amount of computing time required by an algorithm

to run its completion.

e There are 2 types of computing time 1. Compile time 2. Run time




e The time complexity generally computed at run time (or) execution time.

e The time complexity can be calculated in terms of frequency count.

e Frequency count is a count denoting the number of times the statement should be executed.

e The time complexity can be calculated as

Comments — 0

Assignment / return statement — 1
Conditional (or) Selection Constructs — 1

Example 1: Sum of the elements in an Array

Statements Step count/ Execution | Frequency Total Steps

Algorithm Addition (A,n) 0 - 0

{ 0 - 0

/[Ais an array of size ‘n’ 0 - 0

Sum :=0; 1 1 1

fori:==1tondo 1 n+1 n+1
Sum:=Sum+A[i]; 1 n n

return Sum; 1 1 1

} 0 - 0

Total 2n+3

Example 2: Subtraction of two matrices

Statements Step count/ Execution | Frequency Total Steps

Algorithm Subtract (A,B,C,m,n) 0 - 0

{ 0 - 0

for i:=1to mdo 1 m+1 m+1
for j:=1tondo 1 m(n+1) mn+m

CIi,jl := Ali,j1 - B[i,jI; 1 mn mn
} 0 - 0
Total 2mn+2m+1

2. Space Complexity:

e Space Complexity can be defined as amount of memory (or) space required by an Algorithm to

run.

e To compute the space complexity we use 2 factors i. Constant ii. Instance characteristics.

e The space requirement S(p) can be given as S(p) = C+Sp

Where C- Constant, it denotes the space taken for input and output.

Sp— Amount of space taken by an instruction, variable and identifiers.




Example 1: Sum of three numbers

Algorithm Add(a,b,c)
{

/la,b,c are float type variables
return a+b+c;

ks

e The space required for this algorithm is: Assume a,b,c are occupies 1 word size each, total size
comes to be 3.

Example 2: Sum of Array values

Algorithm Addition (A,n)
{

/[Ais an array of size ‘n’

Sum :=0;

for i:-=1to ndo
Sum:=Sum+A[i];

return Sum;

}

e The space required for this algorithm is:
One word space for each variable then i,sum,n 2> 3
For Array A[ ] we require the size 2> n

Total space complexity for this algorithm is S(p) > (n+3)

What to Analyze in an algorithm:
An Algorithm can require different times to solve different problems of same size
1. Worst case: Maximum amount of time that an algorithm require to solve a problem of size ‘n’.
Normally we can take upper bound as complexity. We try to find worst case behavior.
2. Best case: Minimum amount of time that an algorithm require to solve a problem of size ‘n’.
Normally it is not much useful.
3. Average case: the average amount of time that an algorithm require to solve a problem of size ‘n’.

Some times it is difficult to find. Because we have to check all possible data organizations

SEARCHING:

« Searching means to find whether a particular value is present in an array or not.

« Ifthe value is present in the array, then searching is said to be successful and the searching process
gives the location of that value in the array.

o However, if the value is not present in the array, the searching process displays an appropriate
message and in this case searching is said to be unsuccessful.

e Searching techniques are linear search, binary search and Fibonacci Search




{ LINEAR SEARCH: ]

o Linear search is a technique which traverse the array sequentially to locate given item or search
element.

« In Linear search, we access each element of an array one by one sequentially and see weather it
is desired element or not. We traverse the entire list and match each element of the list with the
item whose location is to be found. If the match found then location of the item is returned
otherwise the algorithm return NULL.

o Asearch is successful then it will return the location of desired element

o If Asearch will unsuccessful if all the elements are accessed and desired element not found.

o Linear search is mostly used to search an unordered list in which the items are not sorted.

Linear search is implemented using following steps...

Step 1 - Read the search element from the user.

Step 2 - Compare the search element with the first element in the list.

Step 3 - If both are matched, then display "Given element is found!!!" and terminate the function

Step 4 - If both are not matched, then compare search element with the next element in the list.

Step 5 - Repeat steps 3 and 4 until search element is compared with last element in the list.

Step 6 - If last element in the list also doesn't match, then display "Element is not found!!!" and

terminate the function.

Example:
Consider the following list of elements and the element to be searched...

list 165/20{10|55|32(12|50|99

search element 12

Step 1:
search element (12) is compared with first element (65)

Both are not matching. So move to next element

10




Step 2:
search element (12) is compared with next element (20)

list

12

Both are not matching. So move to next element

Step 3:
search element (12) is compared with next element (10)

list [65]20[20]55][32[12[50]99
12

Both are not matching. So move to next element

Step 4:
search element (12) is compared with next element (55)

ist [65]20]10]58]32]12[50]99
12

Both are not matching. So move to next element

Step 5:
search element (12) is compared with next element (32)

list [65]20[10]55[82[12][50]99
12

Both are not matching. So move to next element

Step 6:
search element (12) is compared with next element (12)

ist [65]20[10[55][32[2[50[99
12

Both are matching. So we stop comparing and display
element found at index 5.

11




BINARY SEARCH:

Binary search is the search technique which works efficiently on the sorted lists. Hence, in order
to search an element into some list by using binary search technique, we must ensure that the list
is sorted.

Binary search follows divide and conquer approach in which, the list is divided into two halves
and the item is compared with the middle element of the list. If the match is found then, the
location of middle element is returned otherwise, we search into either of the halves depending

upon the result produced through the match.

Algorithm:

Step 1 - Read the search element from the user.

Step 2 - Find the middle element in the sorted list.

Step 3 - Compare the search element with the middle element in the sorted list.

Step 4 - If both are matched, then display "Given element is found!!!" and terminate the function.
Step 5 - If both are not matched, then check whether the search element is smaller or larger than
the middle element.

Step 6 - If the search element is smaller than middle element, repeat steps 2, 3, 4 and 5 for the left
sublist of the middle element.

Step 7 - If the search element is larger than middle element, repeat steps 2, 3, 4 and 5 for the right
sublist of the middle element.

Step 8 - Repeat the same process until we find the search element in the list or until sublist
contains only one element.

Step 9 - If that element also doesn't match with the search element, then display "Element is not

found in the list!!!" and terminate the function.

Example:

list [10]12]20{32]|50|55|65|80|99

search element 12

Step 1:
search element (12) is compared with middle element (50)

list 110]12]|20|32{50]{55/65/80|99
12

12




Both are not matching. And 12 is smaller than 50. So we
search only in the left sublist (i.e. 10, 12, 20 & 32).

list 110]12{20]32

Step 2:
search element (12) is compared with middle element (12)

list

Both are matching. So the result is “Element found at index 1"

Example 2:
search element 80

Step 1:
search element (80) is compared with middle element (50)

list (10]12]|20(32|50]55|65(80|99

Both are not matching. And 80 is larger than 50. So we
search only in the right sublist (i.e. 55, 65, 80 & 99).

list 5565|8099

Step 2:
search element (80) is compared with middle element (65)

80|99

list 55|65
80
Both are not matching. And 80 is larger than 65. So we
search only in the right sublist (i.e. 80 & 99).

list 80|99

Step 3:
search element (80) is compared with middle element (80)

list m

80

Both are not matching. So the result is “Element found at index 7"

13




FIBONACCI SEARCH:

Fibonacci search is an efficient search algorithm based on divide and conquer principle that can
find an element in the given sorted array with the help of Fibonacci series in O(log N) time
complexity. This is based on Fibonacci series which is an infinite sequence of numbers denoting
a pattern which is captured by the following equation:

F(n)=n ifn<=1

F(n)=F(n-1)+F(n-2) ifn>1

o Where F(i) is the ith number of the Fibonacci series where F(0) and F(1) are defined as 0

and 1 respectively.
The first few Fibonacci numbers are: 0,1,1,2,3,5,8,13....

F(O)=0

F(1)=1

F2Q)=F(1)+F0)=1+0=1

FR =FQ2)+F1)=1+1=2

F(4) = F(3) + F(2) = 1 + 2 =3 and so continues the series
Other searches like binary search also work for the similar principle on splitting the search space
to a smaller space but what makes Fibonacci search different is that it divides the array in unequal
parts and operations involved in this search are addition and subtraction these arithmetic

operations takes place simple and hence reducing the work load of the computing machine.

Algorithm:

Let the length of given array be n [0. n-1] and the element to be searched be x.
Then we use the following steps to find the element with minimum steps:

1. Find the smallest Fibonacci number greater than or equal to n. Let this number be f(M)

Let the two Fibonacci numbers preceding it be f(M-1) and f(M-2).
F(M) = F(Size of array)

F(M-1) =F(M) - 1

F(M-2) = F(M-1) -1

i (index) = min (offset + F(M-2) , n-1) //Offset = -1

2. While the array has elements to be checked:

-> Compare x with the last element of the range covered by f(M-2)
-> |f x matches, return index value
-> Else if x is less than the element, move the three Fibonacci variables two Fibonacci down,

Indicating removal of approximately two-third of the unsearched array from rear end. Not Reset

offset to index

14




-> Else x is greater than the element, move the three Fibonacci variables one Fibonacci down.

Reset offset to index. Indicating removal of approximately one-third of the unsearched array from

front end.

3. Since there might be a single element remaining for comparison, check if F(M-1) is '1". If Yes, compare

x with that remaining element. If match, return index value.

Example: The Elements in array & Search key is
Search_Key 85

elements 1022|3540 45|50 |80 [ 8285|9095

Index 0|1 (2 (3|4 |5 |6 |7 |89 10
Initially the Fibonacci series is ...
0 1 1 2 |3 |5 8 13 21 | 34
1 12 |3 |4 |5 |6 7 8 9 10
F(m-2) | F(m-1) | F(m)
To calculate index position i = min(offset+F(m-2), n-1), Initially offset value is -1.
F(m) | F(m-1) | F(m-2) | Offset | i(index) a[i] Consequence
13 8 5 -1 (-1+5,10) =4 | 45 1 steps down, Reset offset
8 5 3 4 (4+3,10)=7 | 82 1 steps down, Reset offset
5 3 2 7 (7+2,10) =9 | 90 2 steps down
2 1 1 7 (7+1,10)=8 | 85 Return i

Finally our desired element is found at the location of 8.

SORTINGS:

« Definition: Sorting is a technique to rearrange the list of records(elements) either in ascending

or descending order, Sorting is performed according to some key value of each record.

Categories of Sorting:

The sorting can be divided into two categories. These are:

Internal External
(merges)

* Natural
| | + Balanced

InsertionI Selectionl Exchangel * Polyphase

* Insertion ¢ Selection ¢ Bubble
* Shell * Heap * Quick

« Internal Sorting

o External Sorting

15




Internal Sorting: When all the data that is to be sorted can be accommodated at a time in the
main memory (Usually RAM). Internal sortings has five different classifications: insertion,
selection, exchanging, merging, and distribution sort

External Sorting: When all the data that is to be sorted can’t be accommodated in the memory
(Usually RAM) at the same time and some have to be kept in auxiliary memory such as hard disk,
floppy disk, magnetic tapes etc.

EX: Natural, Balanced, and Polyphase.

INSERTION SORT:

In Insertion sort the list can be divided into two parts, one is sorted list and other is unsorted list.

In each pass the first element of unsorted list is transfers to sorted list by inserting it in appropriate

position or proper place.

The similarity can be understood from the Wall

style we arrange a deck of cards. This sort A

works on the principle of inserting an

element at a particular position, hence the *omed L Unsorted

name Insertion Sort.

Following are the steps involved in insertion sort:

1. We start by taking the second element of the given array, i.e. element at index 1, the key.
The key element here is the new card that we need to add to our existing sorted set of cards
2. We compare the key element with the element(s) before it, in this case, element at index O:
o If the key element is less than the first element, we insert the key element before the first
element.
o Ifthe key element is greater than the first element, then we insert it after the first element.
3. Then, we make the third element of the array as key and will compare it with elements to it's left
and insert it at the proper position.
4. And we go on repeating this, until the array is sorted.
Example 1:
g\?B 45| 8 | 32| 56| Original list 8 |23 45 ?8_32 56| After pass 3
_*_ Unsoted *Soieg & >
23/78| 45| 8 | 32|56 Afterpass 1 8 [23]32[45]78| 56| After pass 4
~ " < Unsotea * - =
— Sorted
23/45|78| |8 | 32| 56| After pass2 8 |23|32|45|56| 78 ] After pass 5
> - -

Sorted Unsorted Sorted

16




Example 2:

Insertion Sort

—

j 12<45,
goll 12|59 |45 |72 |51 | 4sumedblea 12| 45| 59 | 85 | 72 | 51 insert 45 In
T 1st item that place
Y Y 85572 , shift
| i | >72 , shi
| 85| 59| 45| 72 51 REs the ot 12| 45| 59 85| 51 it to the right
—_ j
59<72, so
12| 85| 59 | 45 | 72 | 51 o Insert 12 12| 45| 59 | 72 | 85 | 51 insert 72 in
n that place that place

85>59 , shift

85>51 , shift
12 85| 45| 72| 51 it to the right 12| 45| 59 | 72 i85 ittothe?ight

12<59, so
12| 59| 85| 45 | 72 | 51 insert 59 in

that place

\J 72>51 , shift
12| 45| 59 72| 85 it to the right

\j 85>45 , shift
12| 59 85| 72 | 51 it to the right

‘ 59>51 , shift
12] 45 isg 72| 8 it to the :ight

45<51, so

12| 45| 51 (59 | 72 | 85 insert 51 in
J that place

© wiresource.com

R EAIEAIR
VIV )IY )Y )Y Y )
1

\/ 59>45 , shift
12 459 85| 72 | 51 it to the right

[ SELECTION SORT: ]

e Given a list of data to be sorted, we simply select the smallest item and place it in a sorted list.
These steps are then repeated until we have sorted all of the data.

e In first step, the smallest element is search in the list, once the smallest element is found, it is
exchanged with the element in the first position.

e Now the list is divided into two parts. Wall
One is sorted list other is unsorted list. y/_\

Find out the smallest element in the i minimum(a[k]. . .a[last])
unsorted list and it is exchange with the 0 ik Last
starting position of unsorted list, after " Sorted _4 Unsorted >

that it will added in to sorted list.
e This process is repeated until all the elements are sorted.
Ex: asked to sort a list on paper.
Algorithm:
SELECTION SORT(ARR, N)
Step 1: Repeat Steps 2 and 3 for K=11to N-1
Step 2: CALL SMALLEST(ARR, K, N, Loc)
Step 3: SWAP A[K] with ARR[Loc]
Step 4: EXIT

17




Algorithm for finding minimum element in the list.
SMALLEST (ARR, K, N, Loc)
Step 1: [INITIALIZE] SET Min = ARR[K]
Step 2: [INITIALIZE] SET Loc =K
Step 3: Repeat for J=K+1to N
IF Min > ARR[J]
SET Min = ARR[J]
SET Loc =1
[END OF IF]
[END OF LOOP]
Step 4: RETURN Loc

Example 1:
Selection Sort
rswap—l
| 29| 72| 98| 13 [ 87 | 66 | 52 | 51 35' 13 is smallest
swap
i a—— |
S| 43 ?2‘ o8 | 20 | 87 | 66 | 52 | 51 35' 29 is smallest
r.— T
swap
W ]
:_9: 13 | 29 sy 72 | 87 | 86 | 52 | 51 35' 36 Is smallest
* swap |
N
— 13| 29 | 36 TH 87 | 66 | 52 | 51 98 I 51 is smallest
swap
W —
,.—9" 13| 29| 36 | 51 | 87 | 66 | 52 | 72 93' 52 is smallest
no swap
- ¥
~— | 13| 20| 36 | 51 | 52 | 66 | 87 | 72 93' 66 is smallest
no swapping
swap
»*7 1
=1 13| 20| 36 | 51 | 52 | 66 Bu 72 BEI 72 is smallest
no swap
e *
~— | 13| 29| 36 | 51 | 52 | 66 | 72 | 87 |98 I B7Y is smallest
no swapping
“>| 13| 20| 36 | 51 |52 |66 | 72 | 87 93' sorting completed
L) wiresource.com




Example 2: Consider the elements 23,78,45,88,32,56

e iy

8 |23 32| [78] 45|56 After pass 3

|:23 78|45| 8 | 32|56 Original list

Unsorted - - .
Sorted Unsorted

73 45/23/32|56|  Afterpass 1 8 |23]32| 45| |[78|56|  After pass 4

-
-+
Unsorted Sorted -+
8 |23 |45|78|32|56 After pass 2 8 |23|32| 45|56 73:| After pass 5
- -
Unsorted - Sorted
Time Complexity:

Number of elements in an array is ‘N’
Number of passes required to sort is ‘N-1’
Number of comparisons in each pass is 1% pass N-1, 2" Pass N-2 ...
Time required for complete sorting is:
T(n) <= (N-1)*(N-1)
T(n) <= (N-1)?
Finally, The time complexity is O(n?).

BUBBLE SORT:

Bubble Sort is also called as Exchange Sort
In Bubble Sort, each element is compared with its adjacent element
a) If he first element is larger than the second element then the position of the elements are
interchanged.
b) Otherwise, the position of the elements are not changed.

c) The same procedure is repeated until no more elements are left for comparison.
Wall

After the 1% pass the largest element is placed Bubble up |
at (N-1)" location. Given a list of n elements, TWTFVYPK‘WP ‘
the bubble sort requires up to n — 1 passes to Last| © i
- >
Unsorted Sorted

sort the data.

Example 1:

We take an unsorted array for our example.

‘v 14 ‘ a3 H 27 H a5 ‘ 10 \

19




e Bubble sort starts with very first two elements, comparing them to check which one is greater.

BEBEIEE

e Inthis case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33
with 27. We find that 27 is smaller than 33 and these two values must be swapped.

|. 14 H 33 l] 27 H 35 H 10 :

e Next we compare 33 and 35. We find that both are in already sorted positions.

l 14 H 27 H 33 35 H 10

e Then we move to the next two values, 35 and 10. We know then that 10 is smaller 35.

14|27 s8] s8] 10

e We swap these values. We find that we have reached the end of the array. After one iteration, the

array should look like this —

|14H27H33H10H35‘

e To be defined, we are now showing how an array should look like after each iteration. After the
second iteration, it should look like this

l14|‘27H10H33|‘35‘

e Notice that after each iteration, at least one value moves at the end.

‘, 14 H 10 H 27 H a3 H 35 ‘

e And when there's no swap required, bubble sorts learns that an array is completely sorted.

|l 10 } | 14 | 1 27 | | 33 | ‘ 35 [

Example 2:
11]5
5>-5 swap
unsorted 5| [12

5> 1, swap 1>-5 swap
5 1

12

12 > -5, swap 501

12| |16

20




Algorithm:
BUBBLE SORT(ARR, N)
Step 1: Read the array elements
Step 2: i:=0;
Step 3: Repeat step 4 and step 5 until i<n
Step 4: j:=0;
Step 5: Repeat step 6 until j<(n-1)-i
Step 6: if A[j] > A[j+1]
Swap(A[L.A[I+1])
End if
End loop 5
End loop 3
Step 7: EXIT

Time Complexity:
Number of elements in an array is ‘N’
Number of passes required to sort is ‘N-1’
Number of comparisons in each pass is 1% pass N-1, 2" Pass N-2 ...
Time required for complete sorting is:
T(n) <= (N-1)*(N-1)
T(n) <= (N-1)?

Finally, The time complexity

Y
is O(nz). [ Partitioning: a[0],..., aln —1] J
al¥] < pluot l al*] > pivot
Qu ICK SORT: Recursive qulcksort Pivot: Recursuve qmcksort
al0], ..., ali — 1] ali] ali +1],..., aln — 1]

e Quick sort follows Divide and Conquer algorithm. It is dividing array in to smaller parts based
on partitioning and performing the sort operations on those divided smaller parts. Hence, it works
well for large datasets.

So, here are the steps how Quick sort works in simple words.

1. First select an element which is to be called as pivot element.

2. Next, compare all array elements with the selected pivot element and arrange them in such a way
that, elements less than the pivot element are to its left and greater than pivot is to it's right.

3. Finally, perform the same operations on left and right side elements to the pivot element.

How does Quick Sort Partitioning Work
1. First find the ""pivot™ element in the array.
2. Start the left pointer at first element of the array.

3. Start the right pointer at last element of the array.

21




4. Compare the element pointing with left pointer and if it is less than the pivot element, then move
the left pointer to the right (add 1 to the left index). Continue this until left side element is greater
than or equal to the pivot element.

5. Compare the element pointing with right pointer and if it is greater than the pivot element, then
move the right pointer to the left (subtract 1 to the right index). Continue this until right side
element is less than or equal to the pivot element.

6. Check if left pointer is less than or equal to right pointer, then swap the elements in locations of
these pointers.

7. Check if index of left pointer is greater than the index of the right pointer, then swap pivot element

with right pointer.

Example:
A[91] o 1 2 3 4 5 6 7 8
51| 95| 66 | 72 [ 42 | 38 |39 |41 |15 UNSORTED
0 1 2 3 4 5 6 7 8
Pivot Value <=—| 51| 95| 66 | 72 | 42 | 38 | 39 41 [ 15
0 1 2 3 4 5 6 7 8
95 > pivot value
51] F 66 | 72 | 42 | 38 | 39 | 41 m 15 < pivot value
g 50 swap
check > or < the pivot value «<—
4 5 6 7 8 < J
> pivot value
42 | 38 | 39 E 41 < givot value
s0 swap
check > or < pivot value
— _—
- l 72 al
i > pivot value
51 5 39 | 66 | 95 39 < pivot val
F ) d 50 svl:;;o o
42 < pivot value
38 < pivot value
stop
38 < pivot value
72 > pivot value, so
find split point
swap 38 and 51
subarray for < pivot value subarray for > pivot value
AL[5] AR[3] )
Algorithm:
quickSort(array, Ib, ub)
if(Ib< ub)
pivotindex = partition(arr, Ib, ub);
quickSort(arr, Ib, pIndex - 1);
quickSort(arr, pivotindex+1, ub);

22




{ RADIX SORT: J

e Radix sort is a linear sorting algorithm for integers and uses the concept of sorting names in
alphabetical order. When we have a list of sorted names, the radix is 26 (or 26 buckets) because
there are 26 letters in the English alphabet. So radix sort is also known as bucket sort.

e Observe that words are first sorted according to the first letter of the name. That is, 26 classes are
used to arrange the names, where the first class stores the names that begin with A, the second
class contains the names with B, and so on.

e During the second pass, names are grouped according to the second letter. After the second pass,
names are sorted on the first two letters. This process is continued till the n'" pass, where n is the
length of the name with maximum number of letters.

e When radix sort is used on integers, sorting is done on each of the digits in the number. The sorting
procedure proceeds by sorting the least significant (LSD) to the most significant (MSD) digit.
While sorting the numbers, we have ten buckets, each for one digit (0, 1, 2, ..., 9) and the number
of passes will depend on the [ength of the number having maximum number of digits.

Example 1: Sort the numbers given below using radix sort.
345, 654, 924, 123, 567, 472, 555, 808, 911

¢ Inthe first pass, the numbers are sorted according to the digit at ones place.

Number 0 1 2 3 4 5 ] 7 g 9
345 345
654 654
924 924
123 123
567 567
472 472
555 555
808 808
911 911

e After this pass, the numbers are collected bucket by bucket. In the second pass, the numbers are
sorted according to the digit at the tens place.

Number 0 1 2 3 4 5 & 7 B S
911 911
472 472
123 123
654 654
924 924
345 345
555 555
567 567
808 808

¢ Inthe third pass, the numbers are sorted according to the digit at the hundreds place.

23




Number 0 1 2 3 4 ] & 7 g ]
808 808
911 911
123 123
924 924
345 345
654 654
555 555
567 567
472 472

e The numbers are collected bucket by bucket. After the third pass, the list can be given as final
sorted list. 123, 345, 472, 555, 567, 654, 808, 911, 924.

Algorithm:

1. Let A bea linear array of n elements A[1], A[2], A[3]............ A[n]. Digit is the total number of digit in
the largest element in array A.

Input n number of elements in an array A.

Find the total number of digits in the largest element in the array.

Initialize i=1 and repeat the steps 4 and 5 until( i<=Digit).

Initialize the bucket j=0 and repeat the steps 5until (j<n).

Compare the i"" position of each element of the array with bucket number and place it in the
corresponding bucket.

7. Read the elements (S) of the bucket from 0" bucket to 9" bucket and from the first position to the higher
one to generate new array A.

Display the sorted array A.

Exit.

IS LER

© ®

Divide and Conguer:
e Divide and Conquer is an algorithmic pattern. In algorithmic methods, the design is to take a

dispute on a huge input, break the input into minor pieces, decide the problem on each of the small
pieces, and then merge the piecewise solutions into a global solution. This mechanism of solving

the problem is called the Divide & Conquer Strategy.

e Divide and Conquer algorithm consists of a dispute using

problem
the following three steps. divide

1. Divide the original problem into a set of sub-problems.

solve
subproblem

solve

conquer
q subproblem

2. Conquer: Solve every sub-problem individually,

recursively.

combine

3. Combine: Put together the solutions of the sub-problems

solution to

to get the solution to the whole problem. problem

[ MERGE SORT: J

Merge sort is one of the most efficient sorting algorithms. It works on the principle of Divide and
Conquer. Merge sort repeatedly breaks down a list into several sublists until each sublist consists of a

single element and merging those sublists in a manner that results into a sorted list.

24




Implementation Recursive Merge Sort:
e The merge sort starts at the Top and proceeds downwards, “split the array into two, make a
recursive call, and merge the results.”, until one gets to the bottom of the array-tree.
Example: Let us consider an example to understand the approach better.
1. Divide the unsorted list into n sub-lists based on mid value, each array consisting 1 element
2. Repeatedly merge sub-lists to produce newly sorted sub-lists until there is only 1 sub-list
remaining. This will be the sorted list

Recursive Mere Sort Example:

Split sub-lists in
two until you
reach pair of
values,

Sort/swap pair
of values if
needed.

Merge and sort
sub-lists and
repeat process
till you merge to

Example 2:
|: Ja2] 2 | 32]15 |8 J23] ; |
T a1 T2 518 [ 2
1= 2] 2]
o /\1 2 /\3 4 /\5 6 /\7
1 =1 21 G2 1 B1 [k [
[z |6 [32]42] [T I3 [15] 23]
|24 ]6 |8 J15]23 [32]42 |
MergeSort Algoritm:
MergeSort(A, Ib, ub)
{
If Ib<ub
{
mid = floor(Ib+ub)/2;
mergeSort(A, Ib, mid)
mergeSort(A, mid+1, ub)
merge(A, Ib, ub, mid)
}
}

25




Two- Way Merge Sort:

Step 1: set i,j,k=0

Step 2: if A[i]<B[j] then

copy A[i] to C[k] and increment iand k

else

copy BJj] to C[K] and increment jand k

Step 3: copy remaining elements of either A or B into Array C.

Time Complexities All the Searching & Sorting Technigues:

Sorted Arrayl Sorted Array2 Resultant Array
1| 3|7 | 2 | a6 | 8 1
i ) A
1|3 |7 | 2| a6 | 8 % | 2
1 Tj Tk
1| 3|7 | 2| a| 6| 8 | % | 3
ti 1 P
1|37 | 2| a6 | 8 1 2] 314
i i P
1| 3|7 | 2| 4| 6| 8 1| 2| 83| @&]|%
ti 1 ;
1| 3|7 | 2| a6 | 8 |2 | &) &6 7
Ti 1 T
1|37 | 2| a6 | 8 1 z2|[8|®]|e]| 7] 8
Ai j Tk
1|37 | 2| 4|6 | 8 t|2|3|a|6| 7|8 |w
1 ) Tk
1| 3|7 | 2| 4| 6| 8 1| 2| 3|a|[6] 7| 8|10
i it
Merge Algorithm:

A

Algorithm | Best Time Compiexity | Average Time Compiexity | Worst Time Complexity | Worst Space Complexity

Linear Search | O(1) Q(nj) Q(n) O(1)

Binary Search | O(1) O(log n) O(log n) Of(1)

Bubble Sort om) omn2) Q(n"2) O(1)

Selection Sort | O(n*2) oin"2) o(n*2) o[1)

Insertion Sort | O(n) Qi(n*2) Oo(n*2) Of1)

Merge Sort O(niogn) O(nlogn) O(nlogn) O(n)

Quick Sort O(nlogn) O(nlogn) o(n*2) O(log n)

Radix Sort O(nk) Q(nk) O(nk) O(n+k)

26




UN\T' N
LINKED LISTS

\abup s -
%V\N\l\

Limked Linte @ Toiwoduckion , Reprepontation o Urniked Lt
[ ReMeTy , Snge \inked LAY, Cpsslatiomh <0 A\
Lmnked  \anX | Qe\fej\';,;'fr% A Sl Skes uat , AePucation
of Segb Gked G to  repreacnt oy remnied eUPYR
AT Staraks  watvn mmlpu\o\ﬂwf\ , M{mﬂ\-c%q and
Dlncdvamtagep o Sinqle Unked Sy , Cisculon Lonkedd
Lok, Douds Unked  \sr.

f'\&&igﬁ NRINT Q\"Q'(’J{\W v

LV N N VA VS

D What i ege Umked s,
. : soved Unx -7
0Ny delete QMo VD EN\'E s .
\ Wnkad bW
) Wral  ane e deo«\kcxgeh 2y Dnadvanroden et %"‘S\"

T T BN Y
3)  what M Ahe  Aiffementsy heluEun O RS ® Lot 1_

W yveve an Q\Sg«r‘\-\-\hm Lor «ce_vmﬁc\-mh &eveg\n Bned AN
elpanenys 9

5)  Eaplain  Oppls coiets el e NTERR

: : Lor Vool
G) whot ia dpebh Gmked Say 2 wite o QRN )

Aelefe and d’th\O-‘Q e woder 1 Gak 1

T el B Cireden Grakad Uik 1 Explaim W openehisn]



Linked e =—

'\/\NMW

Linded Gy v o Gneaw  Calledhion & Aok,

e'\m\_ﬁ © thepe e\ @it anee called AR - o

ceacln tode AR\ \\cm\q\% Y _vﬁia\cl(%
YV tale fleld
W) ddmr=ar Sl ‘
D Bafa fHeld  (ped Yo Adere e e\ument (Fredeserration)
7 Addwens fie M URed X0 seye e addoesa ok Teal
Node (e_\m%‘ﬁ%B S WA A Povrress o aowe OdKyeR.

Sne \O.f\;\' Toae NS \\Q‘\St\"i A\ "f\ga% , H“a \:\’\ﬂ. QA AdSresds

fedd S \apr wode  1a WOLL -

. ) AV
STARY - povrvass , Gt Ly tesven W0 Ay Tode @

‘e Gt

W Camy  dyanetrk  entalye  \ant \'én \}&wﬁﬁ X ART - o

Fd  Ame Becend  wede  aadnesd  Wwe Yave  dne addwo?

T Are Sivar node .

. : [ Ba—p~ 1

aer ATt —{ ol ksl
. @

1ZUGy ‘:Q ’l_sk MNode 2™ aode

Laar Node
U&\T‘a tols echrmique dre alddsal  medsp ot @ LRt ohy

dorro Shaln o ~ades.

T START ool em e Gax e"m(’\*Q Lok -

Ten order Yo docn A Umked Gar, we Meed, QE7RSUee el

wode + weieh  Pen duw .g:\.e s  daka and  MRIAK

A -5 shervep Ane Tovirnalien Pt
Nt s Sadwess S the mend tadR .

ruek Tode

Y Aata g

Srruey Mmode  Xvesy |

s



Me:nﬂcrr\ﬁ wrpreacrnkaion ot Uoked \sax :-
AV L -~

(e Vet e Ve N A ATat

VAV e G
T START W Lked Yo Avervep STT‘W
Doka | newt
Yres  cddmesa o e sk tode, ?‘)l H 2
= X ‘*\‘\‘\5_\':@3\&3‘8‘(\(5\0.) Stazshk =\, So e 2 ]
£ 7 _ 3 O =1 ov nd
Ve T\Qa\,a"‘ﬁ&axah akF cddrsesa, \ & E 7
S S NN W - 5 I
_ ' 6
e Ccrc'r-é‘.’_f;Fc:MArsth Nerl  averven ee ; T <
AddTn @ Ane Test node (SN & L 3 |
[V ]
TS0, Wk W\N \cok ot addrsassa, G Ao fekah Ane ment
Aaka Trawn

daka  @larmmeror 1y adielhed Lo oddmLB
o Tssbpq‘f\di\»m& Nerk

. The Accend

& W By ogeln uwee Aee dne

Ao dete Ane renk Mode
o PR oy

K

') We  gepeakr Inis Prodeduse LIkl We Teack

SN e Nent Reld cmntoaty —\ ov Nu, neen

™ Ve W
o 3 drated Wik Need OO

e Acsnade \apt  elermesny
— Rarrmersey b‘iﬂs .J\m\» 3\\'\& Mode n

be  Comacauive ORI \QQGCHCS'T\?:A, ee  We o AvaT

e gty ab e e 3

INAT=R et Mo cofimm™ 2 De - S\ CoMTDY -

. e
D8 e et e @Al mew rote T SVTSY A

: o W
\Lbk WO Ape et sy Wy -S;—\ﬁc Ay ’g“\'f\d —\'\'G_e A

NS W‘Nﬂk pesny oy e eger mcx’r\m\
C CorrOPOYTY GRW freltredsn oo Wi o aw Sryae oTRENGTY SN,

Tre Whr o ovaNaWe &poce Uy called Sweepos\ -
- Tow PGR{\HN’% $vee  apoce \n 'ﬂ\"—m"‘Q ve Pave a Pointe
called  AvALL ¢ Tk sxeren the cddwesny o Hivak Sveo

A Ce. R TORSTREsTY -



— Afbey  Traesing N Tede START

W dhe LBk, Yner TRAL CP_) ‘ Daro N:‘m\- ]
()
availede  Lwes LEOC P N -
M’“"“W e AVALL - AvALL E —!
: &= 4 E 6
- Dele¥oy avede dxow e, oo | .
“‘he oAce. OccupPlea b& e ¢ L 7 -—L B
\ : R L 9
\ \ -
A Qiven Pock 4o free pok g ;
=0 e W‘ﬁ CArty,  TRAL - 9| o -

T ellethog QW Temolming apece Tk dvee peshy , Hobs

Procesas callnd  Govhoje cel\letion -

E_?Qmmlc Memm‘ -

T We  ane \\g&\ﬁ & TemneTy mw%ewm\- Hfumarien,
Called  Calec (), wnolac (), Tesloc (), omd Free()

~ AN e fumafiown ofe GvenoWe.  ve 'Skl '\\“

VoAl ) T Necete Tegaived  SShe o oy ren ama Ry,

S Povoren fieax Byre  oF Nlocoked ATme
Variaie = (Daratype %) weanec (Bred (Serargee));
Bxi- By = (Geab %) vealed (Soect Go))s
Q- Colog C) - Bl\atake Apocs Sov cs:nro@& EAUAY gty ooy ,\\“‘W‘\HQ\""&J
O Fere amd ekt Q pererey Yo TR
Rxi- VGmate 1(()@;@\*3\-& %) CalaC (\\\ ) Bhe st (dgh*‘ﬁwbg
Py = (ooe ¥) calac (20, St Ci'ﬁ‘r)) gt
3 yealag (Y 4. Anemrae e See o pve.\r“\m\xt AMb ot
A Cod
yarsiods = wealsd ((vomebl  Mew S ) 3
4 drecC) 1- Deblacake Mo Previculy Slecaled TR A
Free (Vomiawl) 5

Ext- Avee (B



Asveoqs vy Lioked Ut -

e Covy ave Umeaet  calleahon ol Aaka elersnesty

N r‘n&v\)\eﬂﬁp&‘ Crrdesy -

™,
-—S—(;"( @\ssena ™S

R~ —)A-rfo:ax LIy QW\zcal¥e e qw*\mm

7 Unked Gav o oan Moca¥e Ahe srROETY
AN I e a)

B0 > T oy Imaesiion | Daletion b ey AR e cansy W
Yoo delelre  $ral-  elaseneenl %\ﬁwfn ol elwmesniy 1o
Prviour  \scokiows

I Unked B Toerien| Delaien  Garm pertfeT o 57
P?:‘“\‘} ot oy HOIYLTR  ne et e\l o oveedy W S0
Pesloren  opesration, |

& e QATEOHL e QN add fasd e T Samnent

=3 T Unkad Wk e con add M\\ TEnER o elanrnamty

53T Qe mﬂm A olion  or @}_@’ AsTres TYINGY
TREMST)  APats WoakeRe.
T Te Lnked Wae werseRTy AMecalion  of  Rum- Ty Py “"“\“’@

AATATRC  TRemreTy  allg cakie™ AanaisTy  we Con pere{arm .

S8 Uorked iak 5-

AN

- Sk bmked Uab W e APl Tupe & imked Gar i uirsch

ond o perntey YO tne ey

SV e Comloing aorne A
Toda o Ype Anmne datoipe.

T TTeowenacl & Uked \ant vy onby ong WOY, oo SYART

+s erma N&i@ -
. Ope ooy, &t g‘\'ng\s- Ueked Lk
- TTranery P‘sﬂ‘%
a Seay Q\\i«ri

2+ Ternian
(p- Delehion.



L Tranranss

e et =

-
.-

— Trovewawg o Brked Uak meady,  dec %W\SQ The  Todes
% fre Uk Torden 40 perdort  acme  Opevaiomy, -

Linked  UaAT  Contoirns dhe  Dormre  SIRRT | @hich  dloves
e addwern ef e fear tode im Nhe G

Tor dne ork vode  Ahe Tey field qéc\'zrem W Nuw -

We ase _\qmﬁi one PN pTR Sy OLQC,Q&;’W@Q Ao
Node .

Aleotithm Trowvexaad )

[Twifialize) Seb PTR:= START
Repenk &lepr  wiile  FTR L= Notb
Poply procsxa PYR daka §

Seb PTR = PTR >R}

BE'r\a.\gq:g

- Tor Qm\m\*‘w% uobesy o medep v QB

BHlasa im couekoodex ()

)

(Tainioline’| &<t canth =05
?e.‘:en\— SrepPr eonele. BTR L= Mo
==k  couwnk 3T CToumk &\ g

Seb PTR 1= PTR —>weak 3

ke Coumd 3

X



e Secmsdr\ig s~ @
e Seoay C—\J\'\i\‘t a Usr reampy 6 ~?‘\n¢\ Pavii anlan
e\Peen-  Presermnbed VO e Uraked LAY ov Tok

Weave  are Yo owesreer  for rbes&‘f'ﬂ!\;ﬁ“%) SR b

Tode Q@ddnwexty  oaed Ofmesy Aa DN

e the LB

—

The Gwem  Key elorotrnr i presernted
' : WV WA TRY
Tren T @it rehuaty e hode  Qddme W 1B

bresembed Mrem £ uny rreluomm NULL -

MRS Seorsclh ((Trerm)

(intoline) Set Posi= NuLLy
(Boifaline] et BTRiz STARTS
Refear while  PTR L= NULL
W ffew o= pTR 5 dakal e

et Pog 1= PTIR G
e 5k
Sel pTR: = FIR > Nent g

fetuan (pas),

[

B tlm%mﬂoi\ . —

- T the var W a\'zrcoé‘& Qm’\hﬁx*«\'ﬂ\% e Teder Ynem We

Camn  Avtwestle G TRW Nede W %@\\sus'ma bl

&) AF End- * e LWAbv

3 AF forbicslew povbign I Ane G -

S START - NOULL them e Vs s TRty

TEOAVALL = wae nem T free wresney Qe 1)
'\‘l\e Syureren -



) %i\wn'\ﬂt tv_?- "\le. \_’fﬁ\— -

-~ oy \m@f«'\«g‘ ey Todd o Ao dre UAE reer Sheck

TeTnSTY  APaCy W vedlelbe @Y OC
— IH ihe wrewreny in anvedede ( AVAIL LTNGLLY then

Cweake Tewdy voady OMd BvAlL PCS\"H‘\-\"S\% Yo e
Dent -—RTE,@. Ao

—

AN Tsessy e N\ve s -‘%@c ede , Divre C:\\’Q VO

daka flem  Trve doral Aie\d  Qmmd

e Qo aAdwye

Tolne Nesty fierd
dne  HYat tede cddveA

TN, Nes fede 1a e Sivax Tode

1 Yne \SaYr A0
Shove ke

tew Tede oddwern  Wnto STRRY

Blgeritnm  Tonest _beg (e

i

T AVALL= NuULL

\(
A : o &
LICEe TG SRS Sov Ovealy 9

Qo Yo €k

A
@@«‘if% Seb  New. tode = AVAIL
‘\C{y . Set AVALL 4T AVALL = etk
\.ﬁﬁi S Nwy. tede ydoka e Lresen 3
\‘:(\\“& St Newotede S vent 1= START S
S RE STARY 1= New . Nde §

EromPle. 2

A Mesy Tede szwaﬁ\.r% data Q@ ™o LAy .
G = (o
SERY

Mlotake rowseowy dov nesNade Ccsﬂ\«e:.wmd doba



— fAd TR DAL Ay b&ﬁ\wnﬁﬂ & Ane Lo By tum-%)

K- N0 A8 Q_usr\mmfsi addwesa o

C e et posth ot
STARRN
Ll —al 3] - o

'Nem —neduy SUARY
— NOW waks START dn BPoitr {0 Wne %‘\m\r nodes o sy

STARY

@) Tosest ar med & L oo

- ‘“—mﬂiq\\»«. we ane taking onw povnven  PIR tov accevery
e NModer i dhe LGar  omd i Uy mialiaed Wit START-

. . ~
T Checx fwee TREXNSTY APy A Qﬁ%\(&ﬂm dov T A

— et dne  fleld valse & new_Tode g date ot v
Cam diﬂ*e_c_&ht rpeesh Shemn amd TRk EasE A NOLL

becaing  fme mems-tody 1y e 1obE Tedd nine L -
= NW, we ove Tnmsi:f% 4o Ane \lopd Mode N e e bﬁ

\DQWQ o ' \ank-
TORdA e tada addsern to ine  TRAY Seld S e

Yodel  Yaen Wy Qe C_Ng_q-\-\-r% LRy elwecy TR

Previast \sat TeRs "
. erd ot '
- Tli’ﬁc&\hés bl O rpescked  Tew fedal abr Ahe

EXQ‘W\,?Z:“ NAd  Tre tadd Cssf\ko‘xﬁ‘ma ‘Cf‘ ar end ot -

=SUART

Neore Ty ey nesd. Nede) ng\-mrra (bhlﬂ

= Ao cake

AT et addTon Wy

[@ News - ™A



Taxy Q@ Poyhvex Wastorsls. BTR Wi yolss oF  START.

MD_*ED‘** Bl kgl

STAQ’T PTR

T Thove TR e end aF U

%M

ETART

— ANAL Tewd todut or <nd st the G and c,mm@z the

§ . x ‘ d&){%
Nenk field & pTR  wneduy \DQ AT v Peadal O

mmmﬁm

START o sl
SUART
Ao e et _end ()

{

£ AVAIL = wuLL

Weiire " No treeoey cfer Dewy Nok 3

Go o Balk g
Set New-nedy t= AVAL;
Set AVAIL 3= AVALL —3nest

New_made = datol == Trewn:

5
St new - Dedy - went 1 NOLL §

Set PTe 1= START

ereq‘r Stepr LI\ PTR —rest |=wnuee de

Sek PTR <= DTR - tes \-;
0 \eop

St PR et = New nede



(W) Tossest o posiiColer Posnon ¢ - @

- 3—"‘\%&5‘6\‘1\*‘% o - A0de  WOYG e GAYF 4itat eheck WWQ \A
oNoNakl\e. & vl s o 'i\; i& Q\;c:fx\cx‘c;h; erveaie TR DAY
'i«{\’q%cs\\m *Q\dm. angl potrtew  PIR  eosdemed By STRRT e
R Ps“w\\fw\ﬂ o e Aivak Tedes

-

Nows  we odw "\T\GS\;\T*% Lroro OO edel To ofness | VP

&i AASLY Do, yelue.

o frss —Tede 5

T oNow ue W ety e {ietd \K}\wﬁ y;

doka  passt \'O*Q ’ ?i«-ﬂf_m and  Thenk %'&e \d "UQ By = k- -

T AN vew Crawge  dne Pty e field addrea \Dawm._r\mdw-

F'\"\Q\\&& We  OFe \'N;mh'ﬁm N _tede ok ‘K‘W‘iﬂh W\'\Q}J@\
PSS \gealesn.

A st _poe(_Pes, trewn)
% O AVAIL = NaLL
ware Y ne Teseerey Ko e T8 3
Qobe Ealk 5
MW . vode 1= AVALL T
AVALL = AVAIL = Wenk
_ WQ"‘:: SVART
L=\ 5 |
Welle 14 Pos -
PTR = TR -5 Wik g
v )
VRO Nede -S> daka 1z ey
New. Tade = Rk = PTR > Newr 5

PTR -3 Neak = nNaw.-node |



E';*\QW\P\_\L b — Add Mesd Nade Qtsf\\sﬁ:i‘ﬁ\.\"(\K ‘ q' al E&T“\“Q uu\@:\

Poihon .
e I e N I Gl (Y
BTARYT

~  f\ocoXe “ﬂ\&‘“\@"& der mesao0ede) Q‘S“\’D*ﬂﬁﬁ A

Ness —tadal A ITART
T Ty 9 pemter Variabls PTR WSt wlus

S TG0 ek

SUART ,PTR .
| -\ Pt
T Meve pTR 4 givenn Pog =3 = Pos-\
VG e
SUARY TR

T 1@ t0d T TRk dhe Gar aftex PTR tede

s LEAIE S AT
ST ARY pre 3l )

R Ned
S
PTR = Nenk  cddsroos Ond XN

‘ . o ol
Neuss. nede = et bR Qxe c;xe_adc\fs\i U, el N

AT ey vade Qest\m's\s:x\c& ko, 3

AU QWQ, PTR  =eak addneda P T oemia do e Tady

tron diealy e avg Inrestieg e YA oF given
PO,




- Delehon - Q)

R

~ T owe  an Q\Tum;‘ cgm\rmwma e those gl
O i e WAk, men we Qn perdfore iy
Pe & dolehion  opesafisn, on Gk
O o %a_aw\'\vs\w'% % e Bl

&) ar Bxd & e G
AV Ar Posthcslax podhion o o tadel 0 gk

O av Reginning o dne W oo
Gnk A Nm'w“ Ne
e b e

S~ AL, u feed Ao Check  elhest e

Toden o Tot & Todepn  ane By exerated

CS"\\\Q e camn delete e “ole -‘('c@;ﬁ dhe Bake  Otrestwan

N Poreand,
SXARA -

- NowW e acye Q‘(W\EK\W e START Powihon, Yoo cosrl
adesy ’Ae\gxmﬁ Sivar medst frorey dne By A Cotd
Todat Gy e %m*“\ﬁ Tadyt W \Sny

Now, .\wa com delete e IR code l"?fé‘m ne ke

- \‘—\T\o&\\ LR Qe Ae&'\ﬁ be-&‘m“;«% voday  Srose Are Bny

‘3\\30"(\ Yoo del_ ‘DQQQ )
\

W ostaet = weu
wake " Ro tedep o tne By
Goto Eadk g
PTR 1= STARY
‘STP\QT = START —% nNeak g
Sxee (or) ,
} |



Froserple. 1, — \')e\&\:\"‘\i A mede oy dne Gk Qm\&aierq
doka W

N S I By g S pry o

STARYT

T TfaXe one  PTR vamiakle Qusf\%@l‘ﬁil‘i SN ARY QRSN
Jes [y I Pmﬁ\—'\m% e Herar ods -

T e TAIE S I R S v

START »FTR.

. ~enkt Tedd)
TONOW, QWQ e STARRT Perdhion o Rne i

i

STRRT — vt | dnem W i poverimg Secora et

SR ARy
~ Now, delete

e TR Nade Storo v Une them Sre Hred
[CE RN

L2l 3Gl

ZTARTY
Pl we e delefey beginnig meae Srom e gen Uk
Y Delekg nedy ot Bpa ok Wk

Q

—

— Rk, e Teed e Check wetres e W 1A \wﬁi e
S e, W ovedes ane P\S‘%Qm ted ¥ e Ve e ‘“‘\\1

We  cam  delete e T0Ae ‘—thm e W SNt e T s
- O - '

Now, we  ove *\m\wﬁQ o PTR \aorabs Mn\ﬁ LI R addigey
Mo e iR, ?G\"‘\*\W {\\e \axk eda e Yee ek

Theorm \sh\\k\s— W Qe *Q\(_\’T% PRECTTR ?m'r\h‘“\ e
Breviour ot \axyr wedes -

Now Q\rmema e  addwera oF PRESIR Yo Nt

-—

-—

PTR tede  Troen  Re \Gak- -



— '\-‘f\f\'\cx\b\ we Qe Q;Q\ﬁ{wa e XA Ty %ftsrn Wny--, @;

A\Goatn delo end C Y

3

W osews = wou
Wite U e Tder TR e X3
SoYo Bl

PTR»= sxpge

vhile  ©TR o Neat L=woLtl do
PREPTR 1= FIR 3
PRI = PTR - Nank

PREPTIR 5 femk * = NuLL

: '15 Avee ( BTR) 3

Doleke Ane \ope Tode rosm Uak- Cm\-e:m\i—fﬁ‘ SNYA

STRRT

oo\ -

— Take q forrkes \WarleBe  PTR - amd v esmd $o divik Nedw -
= s S ER I e 7
TUART, PTIR

T Move  PTR fiow  SOSNg 4 emd B Jre Uy teeomuthels

Y PREPIR  PoiTRTg Yo de Previcun ot FIR wag) -

31— ¢ Tl
STRRY PREPTR - PTR.
— New d“m‘ﬂe The T value & PREPYR Thesn ve anw
h\’m\&sﬂ‘% Bk betwesm  PREETR  amd BTR amd

de\‘*e e PTR wede from W

PREPIR

mnm

HeRT PRE pTR.



Aty bg\eﬁ-c% PathiCulex rode frenn Ly o -

—

Flrar  check dhe  Lav C,DT\\‘o.l‘f\S(\"l‘\% Todep oF Tal,

\
T e wedep ane Presgoried *ham@an We. cas

deleke e o from e W oteese uilagd SE
N S

m\m\\x& okl PR Voo Qm\olm\ﬁ START  addrak.

—

Ny
WoWexNe  BTR  Gen FIwen PO wolue  Theomohls,

PRE?TR , PCS\T\\-\‘N\, Previoag & FTR Tedg -

Ny cm\%z, We  addwen & BREBTR- Neay hﬁ %%‘T&ﬁ

a
e of PTR = Nend , o e sy me’r‘\"“‘a Wny

PRTWCHN  PREDBTE  amd et ~redst & TR,
= ONOW e oy dlete PTQ wody e e \i&—, \%ﬂm\\“ WR

Qe c\g\gg\*“ postionlon  Tedd o dne \nx

Bapitem  Aell Pos ((pos)
S

T start = ol
Wite ¥ Mo reden 1R Nee (N
Sote Eady s
, \?TR'-: STRRY ¢
timy -
e 14 Pog Qo
PREPTR <= PR
BRR 1= PTR S Weak
PREPIR et 1= PR —aﬁe&\—;
Lae (=) 5



——

-—

—

@

Eromnple 1 pelebe o veds  QF POy =% frem W

ELENEY e S gy S pa |

TIART
AL OTR  amiaWe 'Pcs\ﬂr\‘c'\ﬂﬁ A J{«‘ﬁs\— 04

R Py I S ) i S oy v

START, PTR

—_—

MO PTR ko fosian (seaion mmesmeily Aake
STUARYT PrRE®IR

e PREPTR  numr fend addws By PR vest

Q\’\G&Wﬂe

- A \d C.&c&fk)‘s()y& e e osme . _Pc&\mk{-ﬂ‘n <y \E'ﬂ\c_‘\ﬁ

PREFMR vedy amd Tt Teder % PTR
R |
STARY PREF’TR P'TQ

0L
ST BTR e dne Wae dnes e ol Wk
Q’S Felowa, -

‘I:\“-VE‘\—‘—?K g
SURRY PRE®TR

. Q\mh@ WK Qwe dﬂke*\‘ﬂ pak cnlar o AL

M‘“ f,\ Svrgls \iﬂ\mc\ (CUN

O NN

— &?w&— Cyeave  a sg\«s\\a ke e ‘(\m'\"‘ﬁ TG

*GK“‘Q\ Toe  Poverery  Vomodes  BTRL = NULL  ond PR
Repeat e ‘—go\\opf\'f\i Procssh  Upte tpe  leat Todsd
M. oy v dode  weodas 'IYW’“‘ '3“‘\6- B cmd - BIR2

VS \F’Q‘\“ﬂ\ﬂ\ﬂ Ao -\\\e Selond WNodel -



7‘ &) Umﬁﬁi e Bene Tedd Teny feld addwesy DR
e P’VR\ valme -
3\ Naw Pcsm*mQ e -Q—\wsr ol A PTRY
“ Q‘rm\%e e SORT m-s\%w% Ao FTRL Deceil
PR W e %\&Wﬁw\\ Tednt 1§ Nne WAY AL
Wenerg!  ovdery-
—  aftren QQQW\“K ox m\r\'ﬁm Yo e \ant 'vmcm c)r\gm“&e Yre.
wente fietd fivavr wed  odvey ”“’-\‘m"';"‘\ W TTR\

- C‘\m\\sﬁ We  ofw 'xevm&‘ﬂ‘% Tne ‘a‘\\fem\ B e bed sl -

ey, 12—
R e A T e N I e A
; SNARY - .
L . ﬂﬁR‘
T @“——vﬁm
t‘s;%(’\"‘ F\'R'-L
PTRy |
1%
o m =
~ A A
P;é\ Pl PrRe
® Shont @
e E— 1R
TF’YR\@
F?&\ 5’?“‘\ Bk PTR2- @
- EX@M% e

S\m\—,m?—‘l—
— F\m\hQ e Teyevpne [CUNIEVS

R o8 W S 1 iy PR o g

T sxamt--



R\j@ﬁ"t\mm 5 -

<]

Al v e egeNEas )

A

PTQ\':'Z‘_ NUL_L g sz :)

Wnile STARY o

3

PTR2 = = &TARY —> Neat- ¢
SR ek 1o Ry g

PTR 2= <Ay :

STARYT ¢~ P‘TQQ;

O AN SR A
, : N
—1) Tonettony oy Delefiony SO0 oe o m\;@

Slenrenilh  for RoRiriRen

Pdvan *ﬁe«?\ oY DM - g\ﬁg\L nked bk -

A T+ deeanlt Tred wnovetre o
and deletion

33 Se In v Hned Ao Apewe B PR APaCe w\ﬂzﬂ

%) We Con reweape he Avaes 6F Ane LAY QCC_CS‘(QX‘T% Yo ooy
TRl ve st -

6) F\\QW‘*T\\'S "‘T\G“ oY 1“»6 or be aeted [E3 Cmrdne Caive.

Aok

"ﬁm—u’“ \ecatiorns, |, €YN \'hmc&(N We  Couny  Mere SRR
T Compukesy

&) TH iy o enpestrswe .



Rlosbebety
i W W 4 ‘ m M
) g% wespuliey  tree JROCH becompe  poveish

Arevepr  dhe  mdororatron .
&)

Ordieserny  acpount o Yene W e adNe d Yo acceR
Mhe  elinmests  im Ane \ank

3) e comt Yyovera ;Sy't’om lant 5, SNY “Hreuresrat 1™
\D‘iﬁ'\*\n‘w\cq.

e Vnean Genked ey -

APpleabions  oF  Umked Wiy °
LV P N N NP ~~ A e

<

- e Qe \\cm\«mq tan ryeep ob AP caiany

D Pobpramial  Re prre pestation
&) SPor Y Moty Mami pulation -

Dpoyromiol  Reprepen tation i

NN A

’ . e ~sugrn by -
T Polytamiols ome  Ane enpeMmoshd CG“‘«@*N"“Q

ASTOMD (S e Bene cosfiicient® Omd  erRpanety

BCR) = QoddR A 4 - oo 4 Q“:‘f\p\
bhese AT W von-gerve  Cotdticiemt
™ B oo T\EﬂQ‘\%VQ \'nkeaeﬂx
T T e Umked wePrescontationy of ‘”‘*Mﬁﬂs, eamcl. Terrn
W Csmddesied  on  rpdd ond ne el Qmwmﬁ
=2 fieldp |

=+ Oyl

V) cosffidemt fHeld

2) faporeny  dield
) Nemt: nede.  oadmen Sie\d




— The coelficlent fetd btoldh e value o Coedii L&W&\\@
S atescm oxd fhe espovrmy Je‘ie\d e dalnn,
the QS\P.BM\' ' Value  of e desren.

Nexs\- .-Q"\e @ Ccombtoama '\‘w& addrers R Ane enly Fescmn
e e Po\mmmio&‘
-~ e C , e Dvuckure o Po\:QnQ)micsk oL Ay

- Sheaek Pobd tod R/

i

?‘T\\' coell 3

6‘:1\\- Q‘l‘;‘; —

swuor %\‘mm\su % Nen .
¥
; ‘ e \rreed By

- ‘(_\\36{"“"““ Lox  Creakion ci-. \30\“1\93’«\\0& eguohign Y&

Qo Cxeake _ 9@\\& ( )

v

?eogd C,)Q;

\Q\\l\e_ Qc}e%.% \Q:O an
{ W START =Ll Aeem

§ new _tody 1= AVANL |
AVALL %= AVALL — Nesw: s
TR tradey =Y Coes§ 12 C 5
™o Nodey <> DR g e

TEW Do = Nrat L= wuLL g

Y
LY

PTR += SUARY ¢
while  PTR-Aweny (=NuLL do

PIR™ PIR =% Nenk- ¢
M Mode 3= AVALL §

“'\\”‘\\L T = AVALL ‘A/N‘iﬂ\‘r;



New _tede - coeff 1= C 5
TR . NOdey -y €3 1= e

b

TR nedey — Menk L NuLL .

PTR s neat 3+ new. toda g

y

Weke " grien Ane coetficiont and Eaparesy Valueps

- Read ¢ €% s . S
Sl cosing ob Wil Exompl 3+ P = 51 % g

Yl Qo o Fuserion. R GIEIE e BTN e TN

Opesaiionn o Pajtremial ;-

We Qe ‘Nm\w« C *k&Pe(\ ot Pﬁ‘i\dmmioj opsrahi ey,
Yoore  awe

) E\fq\ucmr% Po‘-»d noorval ok a«vram \;cx\s.{e/

A AHdltiesn o towe Dabgra Tl

2)  Bebvacrion o e P@b&f\qﬁ'ﬂi&\/\

4) A P\x\ Yo polynariata
DAen ok s polgrwetal o

-—

'iﬁ"’\\-'\cx\\\ taky -t Pddqnqm‘\&\b Py ond Resuwlkany £

=

#\X\ﬁ *\Q\\W_ ,J(Q QM\N% .{‘\ 5 &\G&l—\)\,‘{‘ 3‘-@“1\5 %W’W’\ “RT&)\—
Tedy  ana m\s\ﬁ AounoNds, 2nd one \B\Q oW
T ke FTR vamioble Yo ceprowent ndee VA DR, &FTR

AN RWR vespeckive PQ, amd R

—

Thewe. ave 3 copepn d&m'vra e Cermmpains bé*“-”‘“-‘“

W Aeeme o pagnemials

Y e eupermemt O Yo denern, one eqaol , e Ceefficients
B o deseroy e added  6MA @ e dd® VA

(FRaXed Sy e \elss)



RETR - coef 12 PPIR -5 cotil 4+ QPTR - cor §F ()

QA
CRPIR S Exp 1= pEiR S ERP g

D IV fe  enporemt P greatoy Sham e xpommt ohQ

trem  dne duplicere o Cunyent decto A areaked

amna "\"N@Sr%&(\- e Pc:\ﬂf\umlo& R

D T A erporemt & P b Al Shem e eaveorch §

Wt e dupbcale o caneesnt JY"\‘T“\ Q. W Cresked

ama s e d ‘\‘rs\ %\)‘ﬁfmn‘\ex& R
T RPeend dne “ﬁ?,m'f\g(n‘% '_l(@;m T Ane 3 eeST m\ﬁmwm o
e rertkamy Poyremiel R.
BXembl t- vary Aew e AN
Lekt B= 20 & 2R AT

& T 5 RN

PETART |
o ® ‘ ‘ Tarre

— Compoie Mne exvotenia o b amad
Exp 02 < ER(RQ) D prRHEI QPR HEp

< 3
T BAd e Q \‘QS\'m
To Teak nodg -

REWMRr— 5 | 2 Inwe

Voo Ane Yepultamt Bdynomial Roamd muve

T PR
P (T fﬁ]—}@@

PRTR.
RQETR,

—  CuTRRATe  qpe eXponUAK O T Qind R
Exp(f) = Bxpla) = 222 ned
PR de coefficentyy BAL TS
— N e wesuakamt PosgreTedal R i

GRS Gam

FRPTR

K|S F\R



PSTART— \@—ﬁm L ol ned
PETR
QSTART —s; ‘E\*}@—%ﬁ\ \ N\%@‘

- Tarwe
oW Caenponie  dne CAPOLINS S Y Pt.{kkt\m“r\im
erpP(P) = APLR) =) =1 dmem
AAd e kn coefficiertha 34\ = 2

—

—

NOW e ey todal LT @dded to waulveent R

RIATSBE1 5ol &— Tl Tnid

. T ReTR
CstARY =\ @—» [lolhk
A peTR

NPTR. = e
S, C\i'fe&“é appermd Ane. P weTos Mﬁ AR

e wemtesmt R Aan “mv\iok~

R&T%T%uj—‘?mg%—*\m

?\m\\‘ e m\s\\mm\r chkmm\c-& R \»

—

R = 52 452 4 20 A -
© AT for oAdiNen & dwo rolpraTnialy,
Rgeinen  eado Ry ()

i

PPIR 1= PavhRT ,OFTR o= QSART |, RPR % =ReARyy
wiwle

i

PPTRL= WL 6 Qe 1= woLL do

WS PRPIR 830 = Qute > &30 dnem

i

DR oAl 3T AVALL p
OVALL 2= AVML -5 et

RPTR 1= wm;.,mcm;



RPIR > ool prie. — cackf 4+ QPTR -(O<5E 3

RPTR 5 €% 1 ppre o Eap
RPve - Nesy 1~ yauL L .
PPTR. 1= ppTR - weny 3

QPTR 1 = QPIR - Weat
1
i

PPTR S B 5 QPTR = ©2p Ynen

Dessotedu 3 AVRNL
AVALNL 3= AVALL — N0y
Reve o = W"\Q@;

RPTR = coefl +2 PPIR ~» Coets 3

RPIR - B30 & - PPIR S Enp g

RPTR = memy 2= wa s

T
WOPFR e < Qe s Ee s
New . Toedey 2 = aNAL L g

AVAIL T = AyALL S Ner):

RPTR L = wews vodw g

RPTR =5 caet} 1o QmvQ .5%3% Y
ROTR - Ep = - SPTR -S> g

RETR = wemd = wulLg
\ ROTR. <= Qove 5 Neay 3

YNEM & e \eop

O PETR el dg
3 TRss_Wedss 1 = AVALL

AVALL % = AVALL — Went s
RPTR 1 = New Nodw 3

BPTR = coeff 1= PRIR -5 ey

@WQ "‘3 \\\m\- .~ N\\LL ';

\ PETR 1= PPTR 5 went s



Wale. QFR L= oLl de

3

nNews - Nedai y = AVANL
AVALL 5= AVALL =3 Wenk |
ROTL 5 = Oy _0odes s
RPTR~Y cacfl 1= QPTR —» Coeth g
RPIR —~ €29 1= QPR -5 Eup
ROTR -5 NEXE T L ;
RPTR 1= QPTe -5 nenk ¢

L) End oh funadien.

(8) spoval Maken  Mamipulabion s

Y-
YA A AN o S A A AV

~  Sronel WoATicen O Apesr Tredtices  uIch fawe e
g el Slesnoed  eguol As ZREO -

—

The Nodal  seprogmntadon ok APOOAR Feed AR \»

1R (5w |

CDown | ®iant |

X ,
Neb wen-aese 0 e "T‘b‘\'m
Nale W colunn Valug o TR

-—

I C, Ane  Avvucrose *  Spamre TraEYL \»

%kmdc APDIEAR) _NGaAd

\

Y oy cdumen Vol 3

Traack  Apancag nedel  F Quaid) 5 FEgng g

X

- T d‘“““‘*« beodan e Ay “\Q&r\’t\\'ﬂ\‘ o Towy And

TO: or courerty And Qb srointain Mo G DO 2000

larenB ey fne YN\ &
ROl 3o |\ e readinl s
M e & o ©
& O o B
m o O O
& o o \
- © O & O




e -

Tow headesgd o TePYogmted oy

Ry\o ) R\c\\ BMe - --

r*?’g ol4 8l o

CHo

Qnd "\\\e
TR tengoned Qy  CHo, My, My - - -

= N e wRbrexmictlon ok AporAe cmakek

©

colbomm - Vrodai - any

CH Cls. S
J o5 [PLE [hE ke
e R N e I
| ﬁ U N z
RV
v 00— T
' R¥o - .
l[\
? vV |
1 T AEYE
RY, .
l? * } l v
T
Ay
a0 =
“LTE
I =] 2l 0!8 -
Rits, = | ‘ k
‘p - / q [ .
\ ‘ |
/ __ \ -
= i
- ée R
1 ] 3
| 1 1




Clrecolay Linked Ut -

BNV OSSN O

— A LVerkKed Gar  Grere tre logh mode poimi e %{q‘xﬁrﬁé

Node A calMed Nna <xs Culox Limniked Wwht -
= reve o \3&%\1\“&\#& ava QM'S\TV’Q ot Lak
Shawt

— 30 0 fne ayvuttuse o Clvcolam Woexed UGar W

\

vt Tode

| e dava g
Atrudk Toede X Newk 5

ks
—  The oOporalionr o Clvonlan  Laked Lax
s 1) Tevestion ot o ede/
3) Delehion £ a wode

D Tosestion o axcedst 1o

- WE Cany ke G tes adsl @ g o\l Leeked  Lay D

SRNCS
) ‘i—m@s’ﬁﬁ o teds oF beﬁ\m'\‘mﬂq

Q) '.imcm*{\wQ o Tady Ay erc\ckm'fm

. 46\) (Al \'ﬁa"\ﬂ(\m\‘ .« -
* A

Bldoritern  irossst ey ( e)

o

‘ A W ANALL = novL :
Wike T TRy A cxtca’c'\vi o redy’ Y
o Yo " g
TR0 vadyy 1= AVALL
CANVALL T AVALL -y Ner
N Nede —ydaka 1 e
TR TN ekt shart
P e = stant ;
While  PYY - nent L= sStost 9@
&b P T Py — Neny 3



B —> Real T new ekl § S ©)

Drosy v e tades g

i

Eaaog - T\ﬂ&m‘d-m& o ™Rwtodd  ob dota 9 imig Givcu\as

T B

T ANRXR  wena ™ Sor Ane e fedil Omd rRtaldng W

Save poctt § and ey Wy Srest

( Jstor

ToM O pomked Vool TR frar BT Yo STRRYT Nty
%’co:f‘r

T\EW

ToRove TR 4 Tak i ey Yo \agt Todsd

MR oV. 0. Fre TR \\@dﬂ s\yg bi&\"(\\‘\gﬂ'% o Sﬂtqsa-\—\“rﬁk k- \;Ja\_

-

%\:cm'%"\

-—

Fiwm\\\h e ole \'s\‘,)qx\\—eé\ s Todsd q& be%m»mﬁ 2 the

evrrcadal e d VAL -



Q) A Erdsvg 5 -

Bgovrihm et _end (Trom)

3

TH AVAIL = NOLL  fren

Wrike " 1o wesesey for Cveatiry Testood!
cj\o\:c_ 15 XAl
et nedel = AVALL 3
AVALL 5 = AVARL —% Weny
sy ._'ﬁcscm — data. 2 Uresen 3
N nadel =3 heny

Py ¢ = ayant

-

> Stvowk g

While  pey — wemy 1= Staot do
| P - P o Neay 3

} et Py ~—>\\\e'1¥‘ ST R _Nedel
oty 1 -

Traest T el e Sl W\*‘ﬂ dava.

\ 2\ \}E—ﬂ\ﬁ‘\ ”

Potoke e ooy oy D adl and  Anta, et Seant-

\ 2 gkae

— Take, A Porhes vamaby PIR  wWhay ‘m"\ﬁ&\b‘ YR o START

ot

— faeve

PR UPte \atr Voda, PR pevrdd Ao ‘\sn& dsl
A N S g
‘ STARY PR

~ N vew vedsl  ofen Wwe  ©TR wedw

r“v“\m\\rm W axe |

MAaested  moyg vadyy ar end ot e
Qv Ve d  \opk .

PR

I \E—’%




@) Delelnian & A nody - @
- oWe Cam deleYe e Tedsl Lxoen Goros\ow Lnkas G-

Yoo WO
) me\e‘aw&% o, Tode! ay beg\w\imé
S be,\;a’si'NQ o vody av and&q%,
Y AF begiemicny 5
Bg ety 'be\e’re_b@%(3

§ T STERT — RoLL
Wnke  “wo teder dolhe \ay
Yo Eady
Set B ou- START ¢
bWk \e

we

PIY -5 nesy Lz evAary  do
PYR t= TR -y went ;
P cear @2 gramt -y Weny .
Avee (svamn)y

Ny "S STARYT = o=@ -5 MRRY ¢
E‘)\QW\\:\Q_ s -

De\e*‘\ﬁ Fiesy el Jrown Peve sy

TQXN O Py ey TR :

r——

WG BETS 1o Ane -Dieak todal Wiy

PIR A0 \opt medt e\

- c,\r\m‘%a e ey fierd o

e BTR vady ‘tﬁ&ao_mmw

A aRRTTNS
SVARY a\”%%@]
P,
" Delete A
Ne  SART  wedy fromn G
N oA e Yo Yk redel
ax  SIARY oy ™

—la Gl =l

ENART



Qly A E_fwds"ma v

O\F e e Deletre _evd ()

§ W STARY - munt
Ware Ve Tedsy W e Wity
Qo o Exav g
PTR = svArT;
White  Br —» nent L= stArt o
PREPTIR = e
PR 1 = PR -5 Neak |
PREPIR % Nent 12 svAmRy g

dree Corry .

I

ERUS L A Deleting lapr  Tedy o Ane Wik

Taksl  dow  poeekes vostass TRE®IQ osd PR | ?-n\\r'\’o»:Q THRAD SHRT

K 2] y—(al -

START , PR
PR ey

T OTSNE L PTR 4o \aph vedy G0 peeet® s Bois Yoo peevioup ok
CPTR Tedsl

& ENORY ) Preetr: PR

""‘ Q)(\BS‘"&Q e ey -Q fTeld Qﬁ- WEWQ e af atd da\&‘—@
e PR vedd Sfom e o

TR PREPIR

‘F-J\m\\“ Le QAN dL\o)(‘\ﬁ e Opb drvem  Ane VRN Clvaslosr
Lroked  \sAY - |



Douds. Venked Ay S- &

AN AN
— A dowbe  \Um¥ed Wnt  {n trose CSTORoh tupe of Bmwed \ow
Labsetny Q_Qs’f'\\‘m'!\)\ Q .Ptﬁ‘f\\t*-\'ﬁ Yo the  Neab s vseln oy

PIeVicUr  vede ' Yhe  Reguiesnca -
T TN dowdl Wned VAl b Com ac€od Yooln he A CCexis
Toda ( “Q”* Wﬁ\l‘»\ ond Prede cesany vadal { peioua neday)
TV Omi oy tedl e dhe Ut

Cach  odd e deubl Geved G

4PY€V§QUE\ Dekal \N’{)l\’ NN

I g, e Errodkuny st Doule Umked iRy A

Srradt Ay <xaat

. —>hwd o 3¢l Jeelres
o amtas Rdo [ 3 Tadl el edpd
Thvuek Tody ¥ PYRY

-E Srvudy  redd ?i'—\\\esuv\-;'
; | _

—

T IF mou : . e )
(IS \\&un‘% Ardle PO Ty e GAY &
Brev o ~
A Newy  voluep anw U -
W0 dpe Ay medy q\m‘”ﬁ(\. Bwev 1A NuLL amd o Hve ok
ARSE Aoy Newr fa NuLL
- ‘T‘i'\e“(e., ST 2 opeadiamy  ony dsubs Vonrad Gav yinotal oW
Y Loaerivion |
) DeleMon -
D Twvenion S —
NS T ] ‘
T W Cam ettt Tew Tedn) W Aol Umked BAY  n s o
) Traerting maw ved o begivwiony
Wy ’.t-r\.gqsﬁ-\'ﬂa ey Tedy ot E'nc\s“:ﬂﬂ
WYy T 3 A
(\U)! Toaesiing Mo Nedy Qv Pomhem .
. C Qiver



3y Ay Begd NG L~ )
L - \‘&%\gm\\hm et _,_beﬂ (Trom) |

% WOAVALL = el

Wilve Myg wremeaty ov ¢ readion & TR Tedy s
Qoto By o

New. tody <= AV

AVATL 4 = AVAL L —s Wenk p

DO - nodsl —» pey

L .

> = NUOLL
Newl - tody — daka b= Stemn %
Stast - prev 1o Nes - Nodu 5
C\J S\QT\‘ = W-—‘\QQSJ 3
KOwnPle 1o jpmest Tessnedad ok oegimmies S VAT ity dota
SNy = I EU = I =

TUART

— B coke TS OReiheTH dor Nodal Wiy Aoka ‘a' and Wne
CAC WRTARVEY

—  Add Ype mednodd  helote Aone Sloxt  Todd

Qrd Wﬁi\'\f\\x

Shaw  preedoug, Diend addxon o 7w e

Nawd - nado) SLYARY

— Wow Q‘\W‘%L STARRT  forfanon 1o ne med Cods)

TGN P B ol Ty
ST . i

~ Fr‘“@&\\% W axel brhentad NEod o Todsh ol bé&\m\i\-x\eh - s

O R T TR

laoritnm  trpent exd (Rresn)

W AVALL = NuLL

v e ‘\\\\wanm dAor Orealion Bk-ﬁm‘f\hdm“-)
Kove Ralk

ﬂem — "\%m !.e - R\; A\ L ;



.

N Nodn > Aok 2= Vhenn +

ﬁ
DO NoAY > Neak o oy

BTR = svARy 3

Whtle  BTR v went L= NULL 4o

IR = PR — Wesk |

PrTe DT LT ORWD TR 7

NS N0dY % pyay 1= PTR 4

%

Emparele - Tosart news red al emd Ok Ane B W, daka’q

SRR .

A | | Nalt
—  B\% take W_N‘K\é <"Qr e 1\(5@5 Q‘\'\A ”%\@_\é\ altsa A

[ lnwd

— ake TR, Vesriakle \“\\-\Q‘\\ﬁ Ve PovrkS Yo e ANner k- Nadid

| WW@

<A § BTR
~ mave  PTR atne = Ct.%- \935\*

R Dy Tt T A i

SSTRRY :
. \& amnd.

i
CHFAe e BIR  meny feld  Qmd e Tedd ey Fieid

AV AN N
wguw . Nadd
e;‘T AUy

- ‘F\'f\&\“& ey O ithemted Yes Teddd ok end % dne Ghe
Y &b posiiesdon pohhion L~

BlaeTmitem  ienos _ Pos ( posytenn)

3

W AvAL = NUL

\’““‘“‘& * e Tmmmw3 1S Wa@mim“
G\G\‘G Tk Yy

e S U !\\;A\\_

AVANL -,

= P\\H\\L -~ \\\e_m\—;
new . Node ~> Aok 2= Thenm ¢



TR 1T &ARX 3 =\ g

Wil KPOB -1 Ao

PTR =~ PTR— Newy |
T+ s
TRD - Nhdg - PF=V 1T PIR
(TS PR S N s BTR s Went g

FIR =2naae =5 Dey L Dews T0AS 3

5

ERoehpls - et mos tedn o deol 4 ok Pos = e

SUARRY .
Mocake  wresererny do Tewtedy sh deres

— TaKy TR \ostakl A POl

S ol Gl e ey

STARY ,PIR
BTR  do Yee nesy vodad Loy Fos -\ \wcofon

_ S—
SO T e (e Tal
. =ARY BTR

I belweoxy  TTR  omd I Terk Neds)  9omd

' Qm“‘%l AN e Held et TR temb And e Tody Fields
SYARRY TR [___;
| | =Gl

IR — ‘(\%“b& o~ \‘\mhmdm Y

—

o Vpe Ry nedod

- Mave

o e O
I T W = = I T e T T
SvAeT e,

-—

ﬁ\m\u& W ane  Ingenbed TMew - NGAsy Sk poliv Guelen ecahonot- Lo .
Re Delekion 5 -

AN

TWe Can delete fhe teds fromn Ao Wnked Bak A B wsg
0y A heg\mws% & Ve BN
W B B e Ane Gal
AR BF Potiicslow gotien o e \ing -




Q) Delete Nods/ o beﬂ\m&ma # Are Gtk %~ @

H\S‘SQ‘{: o delete _ \')ﬁ K \

{

WOSEeRY = WL L

wrike Y e woday 0 e EX\ S

Go kn BEalh :
BIR - - STARY +,
STARY = S7ARY ~SWent
STARY — prev | = wuil 3

\ dvee (pTR) |
E\O&’W\p\l — Deleve  dne How o ,gwm Aol Benked Mok -

@IJ:E[ILED&E\E@

START
TOTAXS PTR e DA 48 fne S medas QW Sieey
Volue  Ae the ment ﬂ\cudﬁ&

START
ToBelebe g veds ~lvem dne WAl amd cherge. STREX

Trevioun $ie\d \SQ\\\Q_ ‘e NuLe -

sl = e el T

‘ SUAY ‘
= m\\\ﬁ e oxe  deleked e bﬂﬁ'\'wi{\'f% o e Tedy

e e Aouble Bodgd  \ak
) Deleke modat abr B0 - dne Wik o

Plgeritaen  Qedele - End C )

2

W Svegx = RNULL
. ) NS
WHte " No tedeg YO dne WAy g

SOk Rt s
PTR —evary ;

W2 v -y Newt = wNuy Ao

PRI 1o Weng ;



PTR <% prev —>Neal = Nyl

-g'f&,e ( pvy—(a} g
3

EramBle - Delete modat ab loat rem e givon Mie

TR e T VI = B Y

STARY

TOIAKY BTR gamieww (SN ?‘3‘\“\}\"“\3 R Mne  STARY Tody)
IR TR == R e g GO e BT
START, PR

Weve  wre 4o emd o Weddak .

SR BRI R

TUERY PR

Chrasege VTR Previcous Moedal “Nam- Se\d s S
PTe wedey Hoeen e -

O R o W 2 e R T

START
T Frely b ane dolebed e Lc\&\— redy oo Wk

—

-—

(%) Pelcke Tedw Qr Qyen PoRAAIon -

ARovitnen  Deleke - Po( pog)

i

W avags = UL

Wike e Tedsy W Ake UaL"
SO te By

PTR == ax ART

‘i'\‘::_ ;

Wwesle 3 < Pog o

PTR % = pre — wenl

PYR = prey - Wenk 1 PTR > Nent

PTR DNy~ prev § - Py > DYeyV ¢

Jr‘«-:e C TR Y



FAOmIPl i— Delete amedd o gwen powtion of '

J(*(Qm Are  anr

FremPl t— Delete A Nodsl oF  fivemn  Potnion ot 2,'

dromn  Ane LU

=

START

D

[ ———, |

&

P QI P Y

BEAL VRN = v~ SR U | S PN PQ:\'T"\‘\"" ‘o STARY T

R e 0 N e W L O P W TR

BYORY, PTR

T ave TRk Yo Wptke S\Vc_m Po"’s\'ﬁm of \3‘.

Ad

T T BT B Ty
BTR

STARRY

TH CoomR e PR weds Previows Tedy et Feld

A PR mentr ved) Previcun dield oluw

BTG WE™
ST —‘—gl-\ﬂ\\ YIP:KD ‘Tx\“

Naw  delete

e L e R B

START

\

PrTe. wody  from Ane \Ge:

[ T

— Vi m\\‘ LA AN dddeked he New Pt Ron  Naedg

O™ e iy -



Unit— 11

Svllabus:
* Queues: Introduction to Queues, Representation of Queues-using Arrays and using Linked list,

Implementation of Queues-using Arrays and using Linked list, Application of Queues-Circular
Queues, Deques, Priority Queues, Multiple Queues.

Stacks: Introduction to Stacks, Array Representation of Stacks, Operations on Stacks, Linked list
Representation of Stacks, Operations on Linked Stack, Applications-Reversing list, Factorial
Calculation, Infix to Postfix Conversion, Evaluating Postfix Expressions.

UEUE:

e Queue is a linear data structure in which

elements can be inserted from one end called (

rear and deleted from other end called front.

The deletion or insertion of elements can take place only at the front or rear end called
dequeue and enqueue respectively. The first element that gets added into the queue is
the first one to get removed from the queue. Hence the queue is referred to as First-In-
First-Out list (FIFO).

Operations performed on Queue:

There are two possible operations performed on a queue. They are

v enqueue: Allows inserting an element at the rear of the queue.

v dequeue: Allows removing an element from the front of the queue.

REPRESENTATION OF QUEUEs:

ARRAYs: Queues can be easily

represented using linear arrays. Every | 12 | 9 | 7 [ 18 | 14 | 36 | [

FO 1 2 3 4 65gr 6 7

queue has front and rear variables that Initial Queue

point to the position from where deletions  Enqueue(45)

[12 ] 9 ] 7 [ 18] 14 | 36 | 45 | |

and insertions can be done, respectively.
g0 1 2 3 4 5 6p 7

The array representation of a queue is Queue after insertion of a new element

shown Dequene()

| | 9 | 7 [ 18] 14 | 36| 45| |

Drawback: The array must be declared to 0 pi 2 3 4 5 bR 7

have some fixed size. If we allocate space Queue after deletion of an element




for 50 elements in the queue and it hardly uses 20—25 locations, then half of the space will be

wasted.
LINKED LISTs:

e Inalinked queue, every element has two parts, one that stores the data and another that
stores the address of the next element.
The START pointer of the linked list is used as FRONT. Here, we will also use another
pointer called REAR, which will store the address of the last element in the queue. All
insertions will be done at the rear end and all the deletions will be done at the front end.
If FRONT = REAR = NULL, then it indicates that the queue is empty.

EESHE NE HE S NE S HE e =

Front Intial Quene Rear

Dequeue()

7] 3] e 2] 6] 51X

Front Rear

Enqueue()

Lt 7] >3] >t e >i2] >16] 5] 9] X]

Front Rear

IMPLEMENTATION OF QUEUEs:

Using Arrays:
Algorithm for ENQUEUE operation

Check whether queue is FULL. (rear >= SIZE-1)

If it is FULL, then display an error message "Queue is FULLI!!! Insertion is not

possible!!!" and terminate the function.
If it isNOT FULL, then incrementrearvalue by one (rear++) and
set queue[rear] = value.
Algorithm for DEQUEUE operation

1. Check whether queue is EMPTY. (front == -1)

2. If it is EMPTY, then display "Queue is EMPTY!!l Deletion is not possible!!!" and
terminate the function.
If it is NOT EMPTY, then display queue[front] as deleted element, increment
the front value by one (front ++). If we are deleting last element both front and rear are

equal (front == rear), then set both front and rear to '-1' (front = rear = -1).

Implementation:




FRONT

bl

Let us consider a queue, which can hold FRONT REAR
EnQueue first element

maximum of five elements. _ 1 2 3 4

Initially the queue is empty. Anelement can be

added to the queue only at the rear end of the
queue.

Before adding an element in the queue, it is
checked whether queue is full. If the queue is n
full, then addition cannot take place. Otherwise,

the element is added to the end of the list at the

RE
K
- 4
o il

end. If
EnQueue
4 we are inserting first element into the queue then

n n change front to 0 (Zero).

FRONT REAR o Now, delete an element 1. The element

deleted is the element at the front of the
[EsH! queue. So the status of the queue is:

REAR e When the last element delete 5. The
element deleted at the front of the queue. So the

status of the queue is empty. So change the

values of front and rear to -1 (front=rear= -1)
DeQueue

e  The dequeue operation deletes the element from the front of the queue. Before

deleting and element, it is checked if the queue is empty. If not the element pointed by front is

deleted from the queue and front is now made to point to the next element in the queue.

Drawback: If we implement the queue using an array, we need to specify the array size
at the beginning (at compile time). We can't change the size of an array at runtime. So,

the queue will only work for a fixed number of elements.

Using Linked List:

In a linked queue, each node of the queue consists of two parts i.e. data part and the next

part. Each element of the queue points to its immediate next element in the memory.
In the linked queue, there are two pointers maintained in
struct node
the memory i.e. front pointer and rear {
FRONT REA int data;

pointer. The front pointer contains the
_ NV struct node *next;
address of the starting element of the -1 (1.
J

3

queue while the rear pointer contains the ’ ‘ ’ ‘

address of the last element of the queue.
Empty Queue




e Insertion and deletions are performed at rear and front end respectively. If front and rear
both are NULL, it indicates that the queue is empty. Initially

struct node *front = NULL, *rear = NULL;
Operation on Linked Queue: There are two basic operations which can be implemented on the

linked queues. The operations are Enqueue and Dequeue.
Enqueue function: Enqueue function will add the element at the end of the linked list.
1. Declare a new node and allocate memory for it.
2. If front == NULL, make both front and rear points to the new node.

3. Otherwise, add the new node in rear->next (end of the list) and make the new node

as the rear node. i.e. rear = new node
Dequeue function: Dequeue function will remove the first element from the queue.
1. Check whether the queue is empty or not
2.If it is the empty queue (front == NULL), We can't dequeue the element.
3.0therwise, Make the front node points to the next node. i.e front = front->next;
if front pointer becomes NULL, set the rear pointer also NULL.

Free the front node's memory.

void dequeue() void enqueue(int value)
{
{ struct node *ptr; struct node *newNode = malloc(sizeof(struct node)):
if(front = NULL) newNode->data = value;
printf("Queue is Empty"); newNode->next = NULL;
else
{ if(front == NULL && rear == NULL)
ptr = front; front = rear = newNode;
front = front->next; else
free(ptr); {
if(front ==NULL) rear->next = newNode;
rear = NULL: rear = newNode;
h }
} }

Example: Enqueue()

10 NULL 10 ;—V 20 NULL 20 ‘ —> 30 NULL

new node

new node ‘ new node

insert(30)

insert(10) insert(20) |




Dequeue()

10 ‘ NULL X

TYPES OF QUEUES:
A queue data structure can be classified into the following types:

front rear

1. Circular Queue 2. Deque 3. Priority Queue 4. Multiple Queue

CIRCULAR QUEUEs:

e In a Linear queue, once the queue is completely full, it's not possible to insert any more

elements. When we dequeue any element to remove it from the queue, we are actually
moving the front of the queue forward, but rear is still pointing to the last element of
the queue, we cannot insert new elements.

Circular Queue is also a linear data structure, which follows the principle of FIFO(First
In First Out), but instead of ending the queue at the last position, it again starts from the
first position after the last, hence making the queue behave like a circular data structure.

Operations on Circular Queue: The following are the operations that can be performed

o enQueue(value): This function is used to insert the new value in the Queue. The new
element is always inserted from the rear end.

deQueue(): This function deletes an element from the Queue. The deletion in a Queue
always takes place from the front end.

Enqueue operation: The steps of enqueue operation are given below:
o First, we will check whether the Queue is full or not.

o Initially the front and rear are set to -1. When we insert the first element in a Queue, front
and rear both are set to 0.

From 2" element onwards, When we insert a new element, the rear gets incremented,
I.e., rear=rear+1.

Queue is not full:

o If rear !'=max - 1, then rear will be incremented and the new value will be inserted at the
rear end of the queue.

o Iffront '=0 and rear = max - 1, it means that queue is not full, then set the value of rear
to 0 and insert the new element there.

Queue is full:

o When front ==0 && rear = max-1, which means that front is at the first position of the
Queue and rear is at the last position of the Queue.

o front==rear + 1;




Dequeue Operation: The steps of dequeue operation are given below:
First, we check whether the Queue is empty or not. If the queue is empty, we cannot
perform the dequeue operation.
When the element is deleted, the value of front gets decremented by 1.

If there is only one element left which is to be deleted, then the front and rear are reset -1.

Let's understand the enqueue and dequeue operation through the diagrammatic
representation.

front=rear= -1 front

N-1 0

Empty Circular Queue EnQueue(10) EnQueue(20) EnQueue(30 to 80)

To EnQueue(90)
OverFLOW

DeQueue()
DeQueue() EnQueue(90) EnQueue(55

DeQueue() EnQueue(65)
To EnQueue(75)
OVERFLOW

Applications of Queue:
1. Queues are widely used as waiting lists for a single shared resource like printer, disk, CPU.

. Queues are used to transfer data asynchronously between two processes

. Queues are used as buffers on MP3 players and portable CD players, iPod playlist.

2
3
4. Queues are used in Playlist for jukebox to add songs to the end, play from the front.
5

. Queues are used in operating system for handling interrupts. The interrupts are handled in

the same order as they arrive i.e First come first served.




DEQUE:

Deque or Double Ended Queue is a
Deletion Insertion

type of queue in which insertion and

removal of elements can be performed \ | 1L L1 ] |-

from either from the front or rear. insertion T T De{euon
Thus, it does not follow FIFO rule
(First In First Out).

Types of Deque:
1. Input Restricted Deque: Inthis deque, input is restricted at a single end but allows deletion

at both the ends.
2. Output Restricted Deque: In this deque, output is restricted at a single end but allows

insertion at both the ends.

front front rear

! l ! |
insert" insen“ ) insert
deleter 7 delete 7 delete

Operations on a Deque
¢ Initially take an array (deque) of size n. and Set two pointers at the first position and

set front = -1 and rear = -1.
1. Insert at the Front: This operation adds an element at the front.
e Check the position of front, If front < 1, we can’t add elements in the front end.
Otherwise decrement the front and at front location we can insert the element.
2. Insert at the Rear: This operation adds an element to the rear.
e Check if the array is full. Then the queue is overflow. Otherwise, reinitialize rear = 0
& front=0 for the first insertion, Else, increase rear by 1.and at rear location we can
insert the element.
3. Delete from the Front: The operation deletes an element from the front.
e Check If the deque is empty (i.e. front = -1), deletion cannot be performed (underflow
condition). If the deque has only one element (i.e. front = rear), set front = -1 and
rear = -1. Else, front = front + 1.
4. Delete from the Rear: This operation deletes an element from the rear.
e If the deque is empty (i.e. front = -1), deletion cannot be performed (underflow
condition). If the deque has only one element (i.e. front = rear), set front = -1 and

rear = -1. Else, rear =rear - 1.




[ Priority Queue:- ]

e A priority queue is a data structure in which each element is assigned a priority. The

priority of the element will be used to determine the order in which the elements will be
processed.
e The general rules of processing the elements of a priority queue are

o Anelement with higher priority is processed before an element with a lower priority.
o Two elements with the same priority are processed on a first-come-first-served (FCFS)
basis.

Array Representation of a Priority Queue:

e When arrays are used to implement a priority queue, then a separate queue for each
priority number is maintained. Each of these queues will be implemented using circular
arrays or circular queues. Every individual queue will have its own FRONT and REAR
pointers.

We use a two-dimensional array for this purpose where each queue will be allocated the
same amount of space.

FRONT[P] and REAR]P] contain the front and rear values of row P, where P is the priority
number.

SIZE of CQ FRONT REAR

< o= Q=5 T

Insertion:
e Toinsert a new element with priority P in the priority queue, add the element at the rear
end of row P, where P is the row number as well as the priority number of that element.

For example, if we have to insert an element X with priority number 2, then the priority
queue will be given as shown in Fig.

ENQUEUE SIZE of CQ FRONT REAR W SIZE of CQ FRONT REAR
0

1 2 3

3

0
o

0

< M+ = = 0 = = T

- A+ = = O — = T




Deletion:
e Todelete an element, we find the first nonempty queue and then process the front element
of the first non-empty queue.

In our priority queue, the first non-empty queue is the one with priority number 6 and the
front element is K, so K will be deleted and processed first.

[ Multiple Queues:- ]

e Whenwe implement a queue using an array, the size of the array must be known in advance.

If the queue is allocated less space, then frequent overflow conditions will be encountered.
To deal with this problem, the code will have to be modified to reallocate more space for
the array.

In case we allocate a large amount of space for the queue, it will result in sheer wastage of
the memory. So a better solution to deal with this problem is to have multiple queues or to
have more than one queue in the same array of sufficient size.

An array Queue[n] is used to represent two queues, Queue A and Queue B. The value of n
IS such that the combined size of both the queues will never exceed n. While operating on
these queues, it is important to note one thing—queue A will grow from left to right,
whereas queue B will grow from right to left at the same time.

Example:
QA 10 20 30 40 5 a8

EMPTY fA=ra =-1 fA A B fB=rB=SIZE 10
First Insertion fA=rA =0 fB=rB=SIZE-1

e In the above example the array consists two queues like QA and QB. For QA there are
pointers like fA(front of QA) and rA(rear of A). similarly for QB are fB & rB.

Initially for QA, the pointer values of fA=rA= -1. For QB, the pointer values are
fB=rB=SIZE. Because initially QA and QB are empty.

For the first insertion in QA, the values of fA=rA=0. Similarly for QB, the values are
fB=rB=SIZE-1.

From the second insertion onwards we can increment only the rear pointer rA for QA and
decrement the rear rB for QB.

Delete the elements from queue only at front end. In QA, the elements can delete from fA,
if you delete the element then increment fA. In QB, the elements can delete from B, if you
delete the element then decrement fB.

When the condition rA=rB-1 or rA+1=rB meets then the entire queue is full. If you try to
insert the element in either of queues it says that QUEUE is OVERFLOW.




Stack:-
e Stack is a linear data structure in which insertion and
deletion can perform at the same end called top of stack.

e When an item is added to a stack, the operation is called

push, and when an item is removed from the stack the

operation is called pop.

Stack is also called as Last-In-First-Out (LIFO) list which
means that the last element that is inserted will be the first

element to be removed from the stack.

e Whenastack is completely full, it is said to be Stack is Overflow and if stack is completely
empty, it is said to be Stack is Underflow.

REPRESENTATION & IMPLEMENTATION STACK:

Array Representation of Stacks:

e Every stack has a variable called TOP associated with it, which is used to pointing the
topmost element of the stack. It is this position where the element will be inserted to or
deleted from.

There is another variable called MAX, which is used to store the maximum number of
elements that the stack can hold.

If TOP = NULL, then it indicates that the stack is empty and if TOP = MAX-1, then the
stack is full.

| A | aB | aBC |ABCD |ABCDE|
0 1 2 3 TOP=4 5
Array Implementation of Stack:

The basic operations performed in a Stack:

1. Push(x) - add element x at the top of the stack

2. Pop() - remove top element from the stack

3. peek() - get top element of the stack without removing it

Algorithm for PUSH operation:
1. Check if the stack is full or not.

2. Ifthe stack is full, then print error of overflow and exit the program.

3. Ifthe stack is not full, then increment the top and add the element at top location.




empty stack push(10) push(20) push(30) push(40)

pushing elements into the stack

Algorithm for POP operation

1. Check if the stack is empty or not.
2. Ifthe stack is empty, then print error of underflow and exit the program.

3. Ifthe stack is not empty, then print the element at the top and decrement the top.

40
30 30
20 20 20
10 10 10 10

top=-1
item = 40 item =30 itemn = 20 item =10 empty stack

poping elements from the stack

Algorithm for PEEK operation

1. Check if the stack is empty or not.
2. Ifthe stack is empty, then print error of underflow and exit the program.

3. Ifthe stack is not empty, then print the element at the top without removing it.

Linked Representation of Stacks:

e The drawback in that the array must be declared to have some fixed size. In case the stack is

a very small one or its maximum size is known in advance

In a linked stack, every node has two parts, one that stores data and another that stores the

address of the next node. The START pointer of the linked list is used as TOP.

All insertions and deletions are done at the TOP (similar to insertion at beginning).




e IfTOP = NULL, then it indicates that the stack is empty.
e The linked representation of a stack is
Lol 1] 7] 3] 4] 2] 6] {5]X]

TOP
Linked Implementation of Stack:

e In alinked stack, each node of the stack consists of two parts i.e. data part and the next part.

Each element of the stack points to its immediate next element in the memory.

In the linked stack, there one pointer maintained in the s_.truct node

memory i.e. TOP pointer. The TOP pointer contains the Int datse
address of the starting element of the STACK. struct node *next ;

Both Insertion and deletions are performed at only one end ¥
called TOP. If TOP is NULL, it indicates that the stack is empty. Initially

struct node *TOP = NULL ;
Operation on Linked STACK: There are two basic operations which can be implemented on the

linked queues. The operations are PUSH and POP.

PUSH function: PUSH function will add the element at the beginning of the linked list.
1. Declare a new node and allocate memory for it.
2. If TOP == NULL, make TOP points to the new node.

3. Otherwise, add the new node at TOP end and makes the next of new node is previous TOP.

D 7] s —pia] 2] 6] s ]X]

TOP

BESHECHESBESOESBECOESEN

TOP

POP function: POP function will remove the TOP element from the STACK.
1. Check whether the stack is empty or not
2. Ifit is the stack is empty (TOP == NULL), We can't POP the element.
3. Otherwise, Make the TOP node points to the next node. i.e TOP = TOP->next; Free the

TOP node's memory.

BESIESHES BRSO EsBErOESEN

TOP

L 7] 3] e 2] 6] {5 [x]

TOP




Algorithms:

void POP()

void PUSH(int Value) {.
{ if{TOP==NULL)

struct node *new node=(struct node *) printf("UNDERFLOW™)
malloc(sizeof(struct node)); else

{

new_node->data = Value; PTR=TOP: |
new_node->Next = TOP TOP=TOP->Next;

TOP = new_node; }Eree(PTR)
}

Applications of Stacks

v Stack is used to reversing the given string.
v Stack is used to evaluate a postfix expression.
v Stack is used to convert an infix expression into postfix/prefix form.

v Stack is used to matching the parentheses in an expression.

[ Reversing list: ]

A list of numbers or string can be reversed by using the stack, perform the following steps
1. Reading the elements from the array and pushed into the stack.

2. Popthe elements and again stored into the array starting from first index

Algorithm: Example:

void reverse()

{
// input: array A[ ], size N
// top = -1, Stack S ‘ E PoP e clemenemiyd

/I output: Reversing array A[ | 54 ’
for i=0 to N-1 . e —&Yam Kpakk. and
TOP = TOP+1; Q’f\ﬂﬁ _\e - 5 \T\&Q.K\- PN QT.{Q\G

S[TOP] = A[il;

(

; Nte Stack
for i=0 to N-1

A[i]=S[TOP]; v‘ | '>\M\ i \ D \k \B\

TOP = TOP-1;

T

Strack,

e To find the solution of larger problem, a general method is reduce the larger problem into one
or more sub problems. This process will continuous until the sub problem is finding the
solution. Finally using all the sub problems solutions we will find the solution for the larger
problem.




ARecursion is defined as a function that calls itself.
To understand recursion, let us take an example of calculating factorial of a number.

To calculate n!, we multiply the number with factorial of the number that is 1 less than that

number. n! = n*(n-1)*(n-2)* ... *2*1
PROBLEM SOLUTION

In other words, n! =n * (n-1)! Sl EwdxIx2xll

=5x 4! =5x4x3Ix2x1

=5x4x3! =5wddx 3w

S51=5*%4*3*2*1 =120 =5xd4dxIx2! =5%4d %6

=5x4xIx2x1l =5w% 24

= 120

Let us say we need to find the value of 5!

This can be written as 5! =5 * 41,

where 41= 4 * 3!
Therefore, S5I=5*4*3l
Similarly, Sl=5*4*3*2l
Expanding further S51=5*4*3*2*1l
We know, =1

Now if you look at the problem carefully, you can see that we can write a recursive function to
calculate the factorial of a number. Every recursive function must have a base case and a recursive
case. For the factorial function,

Base case is when n =1, because if n=1, the result will be 1 as 1! = 1.

Recursive case of the factorial function will call itself but with a smaller value of n, this

case can be given as factorial(n) = n x factorial (n-1)

[ Evaluation of Expressions:- ]

An expression is defined as the combination of operands (variables, constants) and operators
arranged as per the syntax of the language.

An expression can be represented using three different notations. They are infix, postfix and
prefix notations:

Prefix: An arithmetic expression in which we fix (place) the arithmetic operator before (pre) its two
operands. The prefix notation is called as polish notation. Example: + AB
Infix: An arithmetic expression in which we fix (place) the arithmetic operator in between the two
operands. Example: A+ B
Postfix: An arithmetic expression in which we fix (place) the arithmetic operator after (post) its two
operands. The postfix notation is called as suffix notation OR reverse polish notation.
Example: AB +
Operator Precedence: When an expression consist different level of operators we follow it. We
consider five binary operations: +, -, *, / and " (exponentiation). For these binary operations, the

following in the order of precedence (highest to lowest): ~,*, /, +, -




Operator Associativity: When an expression consist more than one same level precedence operators
we follow it.
Basically we have Left to Right associativity and Right to Left Associativity. Most of the operators
are follows Left to Right but some of the operators are follow Right to left Associativity like Unary
(+/-), ++/-- , Logical negation (1), Pointer and address (*,&), Conditional Operators and Assignment
operators(=,+=,-=,*=,/=,%=).
Example: x=a/b-c+d*e-a*c

Leta=4,b=c=2,d=e=3thenthe value of x is found as
=((4/12)-2)+(3*3)-(4*2) =0+9-8 =

EVALUATION OF POSTEIX EXPRESSION:

The standard representation for writing expressions is infix notation. But the compiler uses

the postfix notation for evaluating the expression rather than the infix notation. It is an easy task for

evaluating the postfix expression than infix expression because there are no parentheses. To evaluate
an expression we scan it from left to right. The postfix expression is evaluated easily by the use of a

stack.

To evaluate a postfix expression use the following steps...

Read the poststring from left to right

Initialize an empty Stack

Repeat until end of the poststring

. If the scanned character is operand, then push it on to the Stack.

ii. If the scanned character is operator (+, -, *, / etc.,), then pop top two elements from
the stack, perform the operation with the operator then push result back on to the Stack.

Finally! We have one element in the stack, perform a pop operation and display the popped

value as final result.

Postfix Expressionis53+82 - «
Symbol Stack Evaluation

Initially

Stack is em

5
PUSh(5)




PUSh(3)

Q
[o]

ValueI=pop()
Value2=pop()
Result=Value2+Valuel
Push(Result)

Valuel=3
Value2=5
Result=5+3=8
Push(8)

Push(2)

6
8

Valuel=pop()
Value2=Pop()
Result=Value2-Valuel
Push(Result)

Valuel=2
Value2=8
Result=8-2=6
Push(6)

48

Valuel=pop()
Value2=Pop()
Result=Value2*Valuel
Push(Result)

Valuel=6
Value2=8
Result=8*6=48
Push(48)

End of Expression

43

Result=pop()

Final Result is 48




Conversion of INFIX to POSTEIX:

Procedure to convert from infix expression to postfix expression is as follows.

1. Initialize an empty stack
2. Push “(“onto Stack, and add “)” to the end of Infix string.
3. Scan the Infix string from left to right until end of the infix

i If the scanned character is “(“*, pushed into the stack.

If the scanned character is <)”, pop the elements from the stack up to encountering the

“(“, and add the popped elements to postfix string except parentheses.

If the scanned character is an operand, add it to the Postfix string.

If the scanned character is an Operator, compare the precedence of the character with
the element on top of the stack. If top of Stack has lower precedence over the scanned
character then push the operator into the stack else pop the element from the stack and

add it to postfix string and push the scanned character to stack.

Example: a * (b + ¢) *d)

Postfix String




. - . TREES

o
- . . 4

UNIT-IV . i B

UNIT IV
Trees
Introduction Terminology
Representation of trees,
Binary trees abstract data type
Properties of binary trees

Binary tree representation
Binary tree traversals: In order, preorder, post order

Binary search trees Definition
Operations:searching BST, insert into BST, delete from a BST, Height of a BST.

Trees: Non-Lincar data structure

A data structure is said to be linear if its elements form a sequence or a linear list. Previous

linear data structures that we have studied like an array, stacks, queues and linked lists organize
data in linear order. A data structure is said to be non linear if its elements form a hierarchical
classification where, data items appear at various levels.

I'vees and Graphs are widely used non-linear data structures. Tree and graph structures represent
hierarchical relationship between individual data elements. Graphs are nothing but trees with
certain restrictions removed. —

Tree§ represent a special case of more general structures known as graphs. In a graph, there is no
restrictions on the number of links that can enter or leave a node, and cycles may be present in the
graph. The figure 5.1.1 shows a tree and a non-tree.

defined as follows.

Tree is a non-linear data structure which or

. b anizes data in hie .
recursive definition. . 4 in hicrarchical structure and this is a

A tree data structure can also be defined as follows

A tree is a finite-set of one or more nodes such that:

: , = e . 8

Scanned with CamScanner

Scanned with CamScannerl



_" B | T TRees | ©
a ) ’ . EE;\ ‘\6’
UNIT- IV PR R L u
' 0 e e partitioned Into n>=(
' ' : maining nodes ar
There is a specially designated node called the rQO‘z; I‘;z r;/c wall T1. ..., Tn are the subtrees of the
IS : ’

disjoint sets T1, ..., Tn, where cach of these sets

root.

A tree is hierarchical collection of nodes. One of the nodes, known as the root, is at t.he tog qf the |
hierarchy. Each node can have at most one link coming into it. The node where the link ongmz.ltcs 1S
called the parent node. The root node has no parent. The links leaving a qode (an)f n}meer of links
are allowed) point to child nodes. Trees are recursive structures. Each child node is itself the root of

_a subtree. At the bottom of the tree are leaf nodes, which have no children.

Advantages of trees _
Trees are so useful and frequently used, because they have some very serious advantages:

» Trees reflect structural relationships in the data

» Trees are used to represent hierarchies

 Trees provide an efficient insertion and searching

 Trees are very flexible data, allowing to move sub trees around with minimum effort

Introduction Terminology

In a Tree, Every individual element is called as Node. Node in a tree data structure, stores the actual
data of that particular element and link to next element in hierarchical structure. Example

\ TREE with 11 nodes and 10 edges

B
e - In any tree with ‘N’ nodes there
will be maximum of ‘N-1° edges

-~ In a tree every individual
element is called as ‘NODE’

Scanned with CamScanner

Scanned with CamScanner2



- - i
| - - - - h

. Root

-—

In a tree data structure, the first node is called as Root Node. Every tree must have root node. We
can say that root node is the origin of tree data structure. In any tree, there must be only one root
‘node. We never llave multiple root nodes in a tree. In above tree, A is a Root node

2. Edge -
In a tree data structure, the connecting link between any two nodes is called as EDGE. In a trec with
'N' number of nodes there will be a maximum of 'N-1' number of edges.

3. Parent

In a tree data structure, the node which is predecessor of any node is called as PARENT NODE. In
simple words, the node which has branch from it to any other node is called as parent node. Parent
node can also be defined as "The node which has child / children". e.g., Parent (A,B,C,D).

4. Child

In a tree data structure, the node which is descendant of any node is called as CHILD Node. In
simple words, the node which has a link from its parent node is called as child node. In a tree, any
parent node can have any number of child nodes. In a tree, all the nodes except root are child nodes.

¢.g., Children of D are (H, IL)).

5. Siblings

In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple
words, the nodes with same parent are called as Sibling nodes. Ex: Siblings (B,C, D)

6. Leaf

In a tree data structure, the node which does not have a child (or) node with degree zero is called
as LEAF Node. In simple words, a leaf is a node with no child.

SN e ==

Scanned with CamScanner

Scanned with CamScanner3



—_- _ -
. TREES :
- . 0

et —
- -
e

-

UNIT- IV. _ .
' | node is also a node

es. Externa

d as External I*.Jod
. (KvLyF’G’M’[’J)

Terminal' node. EX:

" In a tree data structure, the leaf nodes are also call
with no child. In a tree, leaf node is also called as

7: Internal Nodes |
s INTERNAL Node. In simple

In a tree data structure, the node which has atleast one child is called a

words. an internal node is a node with atleast on¢ child. - NT—
In a tree data structure, nodes other than leaf nodes are ca ; Nodes. 1he 10

also said to be Internal Node if the tree has more tha
‘Non-Terminal' nodes. Ex:B,C,D,E,H

8. Degree

node (or)number of subtrees of a node 1s
gree of a node is total number of children 1t
'Degree of Tree'

In a tree data structure, the total number of children of a

called as DEGREE of that Node. In simple words, the De
has. The highest degree of a node among all the nodes in a tree is called as

Here Degreec of Bis 3
Here Degrece of Als 2
Here Degree of F is O

- In any tree, ‘Degree’ a node is total
number of children it has.

9. Level

[n a tree data structure, the root node is said to be at Level 0 and the children of root node are at
Level l.and the children of the nodes which are at Level 1 will be at Level 2 and so on In simple
worc.ls, in a tree each step from top to bottom is called as a Level and the Level count starts w'thp'O'
and incremented by one at each level (Step). Some authors start root level with 1 |

10. Height

I g

path is called as HEIGHT of that Node. In a tree. hej
. : , height of the root is sai -
tree. In a tree, height of all leaf nodes is '0'. ' P N e height of the

11. Depth

Scanned with CamScanner

Scanned with CamScanne|4




12. Path

- In any tree, ‘Path’ is a sequence

of nodes and edges between two
nodes.

Here, ‘Qg;h’ l{gtyveqn AR)is
TA-B-E-J)

Here, ‘Path’ between C & K is
C-G-K

13. Sub Tree

In a tree data structure, each child from a node forms a

subtree recursively. Every child node will
form a subtrec on its parent node.

Subtree

Tree Representations

A tree data structure can be represented in two methods. Those methods are as follows...

|.List Representation

2. Left Child - Right Sibling Representation

Consider the following tree...

=

5~

s
axn
—*—

Scanned with CamScanner

Scanned with CamScanner5



~—— ——

- Sa————————e——V -

-

UNIT- IV

$ = | ith data and
1. List Representation resenting ,
p s of nodcs one fof rcl:iata from root g Zl t(}ile tre: i, Ity
' ! o type ! e directly. Th;
In this representation, we use tW wt};pstart Jith a ode w sl p other 10 y. Thig
for representing only rcfcn;‘nccs.' e node and 15
linked to an internal node through ren
. rcc.
Y " List rcprcscmation as follows...
g —

¢ can be rcprcscn(cd usin

The above tree exampl

Fig: List representation of above Tree

List Representation -
—(A(B(E(K,L),F),C(G),D(H(M),1,])))
— Theroot comes first, followed by a list of sub-trees

data |link1 | link2| ... link k

—

Fig: Possible node structure for a tree of degree k
2. Left Child - Right Sibling Representation

— . . :
this representation, we use list with one type of node which congists of three fields namely Data

field, Left child reference field and Right sibling reference field. Data field stores the actual val f
aluc o

follows...

Scanned with CamScanner

Scanned with CamScanner6



UNIT- IV > - TREES

data
left child |right sibling

Representation as a Degree ~Two Tree

To obtain degree-two tree representation of a tree, rotate the right- sibling pointers in the left child-

right sibling tree clockwise by 45 degrees. In a degree-two representation, the two children of anode
are referred as left and nght children.

Binary Trees

Introduction

- : . : : |
In a normal tree, every node can have any number of children. Binary tree is a special type of tree

data structure in which every node can have a maximum of 2 children. One is known as left child \
and the other is known as right child.

A tree in which every node can have a maximum of two children is called as Binary Tree.

In a binary tree, every node can have cither 0 children or 1 child or 2 children but not more than 2
children. Example

There are different types of binary trees and they are...

™

Scanned with CamScanner

Scanned with CamScanner7




UNIT- IV - '
. ® , U

- —

. Strictly Binary Tree 11 oo Bt invshrictly binary,
en.

' de can have @ maximum of two chi . [ nod ce, g,

In & binary free, every ace = one. That means cVery internal node must haye e"acuj

node should have exactly two children orh 1 as follows...
two children. A strictly Binary Tree can be el _
or zero number of children 1s called Stn'ctly Bi[i

ary Tree or Proper Binary Tree or 2-Tree

)

A binary tree in which every node has cither tw? .
Tree. Strictly binary tree is also called as Full Bin

2. Complete Binary Tree

In a binary tree, every node can have a maximum of two children: But in strictly binary tree, every
in complete binary tree all the nodes must hay,

node should have exactly two children or non¢ and
exactly two children and at every level of complete binary tree there must be 2 level number of

nodes. For example at level 2 there must be 2°2 =4 nodes and at level 3 there must be 23 = g

nodes.
A binary tree in which every internal node has exactly two children and all leaf nodes are at same

level is called Complete Binary Tree. —

Complete binary tree is also called as Perfect Binary Tree

Full BT VS Complete BT

= A full binary tree of depth k is a binary tree of
- F
depth kK having 2 -1 nodes, k>=0.
= A binary tree with » nodes and depth kis
com;t))lete iff its nodes correspond to the nodes
nNnumbered from 1 ton in t 8
Qamper " he full binary tree of

S

3. Extended Binary Tree

| Scanned wifh CamScanner

Scanned with CamScanne|8



UNIT- IV = -, g ' TREES

Definition: A binary tree is a finite set of nodes that is cither empty or consists of a root and two
disjoint binary trees called left subtree and right subtree.

ADT contains specification for the binary tree ADT.

Structure Binary_Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or consisting of a root node, left Binary Tree, and right
Binary Tree.

Functions:

for all bt, btl,  bt2 € BinTree, item € element

Bintree Create()::= creates an empty binary tree

Boolean IsEmpty(bt)::= 1 (bt==emply binary tree) retum TRUE else return FALSE

BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is b1/, whose right
subtree i1s bz2. and whose root node contains the data item

Bintree Lchild(br)::= if (IsEmpty(bt)) return error ‘else return the left subtree of bt
| element Data(bt)::= if (ISEmpty(bt)) return error clse return the data in the root node of bt

Bintree Rchild(br)::= if (IsEmpty(btf)) return error else return the right subtree of bt

Samples of Trees

Complete Binary Tree

a (A . g

e 3

r

_. <> O Fm) (e
o Skewed Binary Tree 3 o o o e

s . S

CHIAD TE I N

Differences between A Tree and A Binary Tree

«  The subtrees of a binary tree are ordered; those of a tree are not ordered.

i

Scanned with CamScanner9

"—* e ——— SEN

Scanned with CamScanner




UNIT- IV C 9 g ~'e.

' Vi d as trees.
. b ame when viewe
Above two trees are different when viewed as binary (rees. But sar

Properties of Binary Trees
1.Maximum Number of Nodes in BT

. . B IS —|
. - ; >=1,
e The maximum number of nodes on level i of a binary tree 18 2,

a k =1
. . . ; -1. k>=1.
e The maximum number of nodes in a binary tree of depth k 1s 2 1, k>=1

Proof By Induction:

: - : odes on
Induction Base: The root is the only node on level i=1.Hence the maximum number of n

g T
level i=11s 27 =2"=1.

Induction Hypothesis: Let I be an arbitrary positive integer greater than 1.Assume that maximum
number of nodes on level 1-1 is ;i

Induction Step: The maximum number of nodes on level i-1 1s 2'2 by the induction hypothesis. Since

each node in a binary tree has a maximum degree of 2,the maximum number of nodes on level 11is

. : . i-1
two times the maximum number of nodes on level i-1,or 2"".
k

The maximum number of nodes in a binary tree of depth k 1s ZZH =2" -1 _

2 Relation between number of leaf nodes and degree-2 nodes: For any nonempty binary tree, T, if
ng 1s the number of leaf nodes and n; the number of nodes of degree 2, then ng=ny+1.

PROOF: Let n and B.denote the total number of nodes and branches in T.  Let no, Ny, N2
represent the nodes with zero children, single child, and two children respectively.

B+1=n = B=n+2n,=> n+2n,+1=n,

n, +2"2+ ] au n0+n ‘+n2 > no=n2+ l . ‘

3. A full binary tree of depth k is a binary tree of depth k having 2 -1 nodes, k&>=0.

A binary lrcg with n nodes and depth k is complete iff its nodes correspond to the nodes numbered
from 1 to n in the full binary tree of depth k.

Binary Tree Representation

A binary tree data structure js r

. cpresented using tw —
Representation 2)Linked List Representation g two methods. Those methods are 1)Array

Scanned with CamScanner

Scanned with CamScanner



ONT-IV By , TREES

I)Amray Representation: In array representation of binary tree, we use a one dimensional array (1-D

Array) to represent a binary tree. To represent a binary tree of depth 'n' using array representation,
we need one dimensional array with a maximum size of

A complete binary tree with n nodes (depth = log n + 1) is represented sequentially, then for

any node with index i, 1<=i<=n, we have: a) parent(i) is at i/2 if i'=1.If /=1, i is at the root and
has no parent. b)left child(i) ia at 2i if 2i<=n. If 2i>n, then i has no left child. ¢) right child(i) is at
20411 28 +1 <=n. I 2i +1 >n, then i has no right child.

Disadvantages: (1) waste of apace l » | ] N
(2) Insertion/deletion probliam ( 2 l B
[3) C —
(4]
Cadtal | A (51 DL
(3)
: H
1

2. Linked Representation

We use linked list to represent a binary tree. In a linked list, every node consists of three fields. First
field, for storing left child-address, sccond for storing actual data and third for storing right child
address. In this linked list representation, a node has the following structure...

left child\ data \ right_child /

| | left_child right_child

typedef struct node *tree_pointer;

typedef struct node {
int data;

tree pointer left _child, right_child;};

Scanned with CamScanner

Scanned with CamScanner




A2 N [ ] [wnn] P roue] (oot

Binary Tree Traversals

thn. We wanted to display a binary tree, we need to follow some order in which all the nodes of
that binary tree must be displayed. In any binary tree displaying order of nodes depends on the

raversal method. Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree
Traversal. i

There are three types of binary tree traversals.

| )In - Order Traversal 2)Pre - Order Traversal 3)Post - Order Traversal

Binary Tree Traversals

1.1In - Order Traversal ( leftChild - roor - rightChild )

- D-J)-B-F-A - G-K-C—#H

2. Pre - Order Traversal ( root - leftChild rightChild )
L A-B-D-1-J-F-C-G-K—H

3. Post - Order Traversal ( leftChild - rightChlild - root )

I-J-D-F-B-K-G-H-C—A

CHAariILn s

1. In - Order Traversal ( leftChild - root - rightChild )

In In-Order traversal, the root node is visited between left child and right child. In this traversal, the
left child node is visited first, then the root node is visited and later we go for visiting right child
node. This in-order traversal is applicable for every root node of all subtrees in the tree. This is

performed recursively for all nodes in the tree.

In the above example of binary tree, first we try to visit left child of root node ‘A, but A's left child js

r left subtree. so we try to visit its (B's) left child 'D' and again D is a root for subtree -

a root node fo d 'T and it is the left most child. So first we

with nodes D, 1 and J. So we try to visit its left chil

12

Scanned with CamScanner

Scanned with CamScanner

— — - — - - ——— =~ — —




UNIT- IV = -

. . TREES

visit Tthen go for its roof .
. node '’ - o R .
the left part of node B Then \:gg and later we visit D's right child 'J'. With this we have completed

completed left part o £ e, & Th'B' a.nf! next B's right child 'F' is visited. With this we have

parts of node A. Then we g f “h Visit root node 'A’. With this we have completed left and roc?t
root C. So go for left Childgof gr nght part of the node A. In right of A again there is a subtree with
we Visit 'G' and then vigiy g and agam it ls.a subtree with root G. But G does not have left part so
Then visit root node'C” and n l’lghl‘ fhilf'i K With this we have completed the left part of node C.

stop the process. Xt visit C's right child 'H' which is the right most child in the tree so we

That means here we have vicited : |
Iy € visited in the order of 1-D-J-B-F-A-G-K-C-H using In-Order

In-Order Traversal for above example of binary tree is

I'D‘J-B-F-A-G_K_C_H — = -
Algorithm

Until all nodes are traversed —

Step 1 — Recursively traverse left subtree.

Step 2 — Visit root node.
Step 3 — Recursively traverse right subtree.

void inorder(tree_pointer ptr) ~  /* inorder tree traversal */ Recursive

{
if (ptr) { ‘ ) _
inorder(ptr->left_child); . ; )
prinitf(“%d”, ptr->data);
indorder(ptr->right_child);
}
} . .
2. Pre - Order Traversal ( root - leftChild - nghtChild )
In Pre-Order traversal, the root node is visited before left child and right child nodes. In this
traversal, the root node is visited first, then its left child and later its right child. This pre-order
traversal is applicable for every root node of all subtrees in the

tree.

In the above example of binary tree, first we visit root node 'A’ then visit its left child 'B' which is a
root for D and F. So we visit B's left child 'D’ and again D is a root for I and J. So we visit D's Jeft
child'l' which is the left most child. So next we go for visiting D's right child 'J'. With this we have
completed root, left and right parts of node D and root, left parts of node B. Next visit B's right
child'F". With this we have completed root am! !e.ﬂ parts of node? A. So we go for A's right
child 'C' which is a root node for G and H. After visiting C, we go for its left child 'G' which is a root

. PR SSS N

Scanned with CamScanner

Scanned with CamScanner



' ; : - wo for G's right child .,
~ 104e K. So next we visit left of G, but it does not have 1ot °'"."’.tsg-;v:i§r?t child 'H'%vhhichlli(: :1(1
ith this w ; | rts. Next visl e
¢ have completed node C's root and left parts op the Process

Aight most  chi - So we
¢ *hild in the trec. . :
That means here we have visited in the order of A-B—D-H-F-C-G-K—H using Pre-Order Traversa].

- Algorithm
Until al nodes are traversed —
Step 1 - Visit root node.

Step 2 - Recursively traverse lefi subtree.

e ————

Step 3 - Recursively traverse ri ght subtree.

void preorder(tree_pointer ptr) /* preorder tree traversal */ Recursive

if (ptr) {
printf{(**%d”, ptr->data);
— P"CO"dcf(ptr->leﬁ_child);
} preorder(ptr->right_child):

|
3. Post - Order Traversal ( leftChild - rightChild - root )

In ?ostO@a traversal, the root node is visited after left child and right child. In this traversal. left
child node is visited first, then its right child and then its root node. This is recursively performed

until the right most node is visited.
Here we have visitcd' in the order of [-J-D-F-B-K-G-H-C-A using Post-Order Traversal

Alg_orithm

Until all nodes are traversed —
Step 1 — Recursively traverse left subtree.

Step 2 — Recursively traverse right subtree.

Step 3 — Visit root node.

void postorder(tree_pointer ptr)

{

if (ptr) {

postorder(ptr->left_child);
postorder(ptr->right_child);
printf(“%d”, ptr->data);

}

/* postorder tree traversal */ Recursive

14

Scanned with CamScanner

Scanned with CamScanner



UNIT- IV

Arj
Ithmetic Expression Using BT

>,

INnorder raversal

el . A/BCTSCe*Ds i
( - '} Ce) INnfix expression

- e > - Preorclesy traveraal
koz (\',)—_ ***/JARBRCDE

e S Prefix expression
. - N Postarder traversal

/D Ced AB/Cr Do,
, C . F o

- \\‘\ Postfix exXpression

levves) Oreclesy travers o)
> T EOD 7 AR

Trace Operations of Inorder Traversal

TREES

Call of inowrde ol - =— §

' ooy : alve 1 root . Action Call of inorder Value in root A-‘T"_’E_

2 53 U C =

3 & 12 NUILL

4 1 L& printf

s A 13 NULIL. -

: NULL f“ l‘) printi

- A .

- pPryane 15 NULL gy

4 T _ 14 D printf

s R pamee 16 NULL.

: NULL : . ; printl

B -
J primr IR s
| ;0 NULL i NULL
= - ; = printl’
_prinrr 19 NULL

Iterative Inorder Traversal (using stack)
void iter_inorder(tree._pointer node)™ )
{ .
mttop=-1;  /*nitialize stack */
tree_pointer stackkMAX_STACK._SIZE]:
for (;;) {
| for (; node; node=node->left_child)
; add(&top,node);  /* add to stack */
| node= delete(&top),  /* delete from stack */
if ('node) break; /* empty stack */
printf{*%D”, node->data),
node = node->right_child;
}

}
! ——— hrmg_saLwem\s(awtcmwownstmktoacHamlmmmdcs&sm:mnsim_

Analysis wnbcmnbaofnodsinmwaymdcofhmkplawdmmﬂmmedﬁnmthestackcxactlyonca
tyiso(n)'mmmqumtisequaltomcdqnhﬂfmwm is O(n).

So ﬁmecomp"’—’d

. 15

a
pn
e T SURE e T S R——— )

Scanned with CamScanner

——

Scanned with CamScanner



void lC’Velgordcr(m» mntu_ ptr) * lC.VCl order tree n'avc[sﬂ_l */
{
int ﬁ'(mt = Trear = 0’ . .
free_pointer queuefMAX_QUEUE SIZE};
If ('ptr) retum; /* empty queue */
addq(front, &rear. ptr);
for (;;) {
ptr = deleteq(&front, rear); m——
if (ptr) { _ —
printf* %", pt->data)
if (pr>left child) — T -
addq(front, &rear, ptr>left_child); _
if (ptr—>right_child) _ -
addq(front, &rear, ptr>right_child);
} —
else break;
) }
Level order Traversal is implemented with circular queuc. In this order, we visit the root first, then root’s left child
followed by root’s right child. We continue in this manner, visiting the nodes at each new level from left most to right

most nodes.
We begin by adding root to the queue. The function operates by deleting the node at the front of the queue, printing
mnd)cnode’sdamﬁdd,mdaddingﬂlené(h’slcﬁmdﬁghdﬁldmnoﬁ\cq\m'lhelevdorda-txaversalforabove

anthmetic expressionis+*E *D/CAB.
Binary Search Trees

Binary Search Tree Representation
Binary Search tree exhibits a special behavior. A node's left child must have value less than its

parent's value and node's right child must have value greater than it's parent value.

16

T —

Scanned with CamScanner

Scanned with CamScanner




UN'T: \Y) " ) ) ) o S ‘. TREES g

-

We're going to implement tree using node object and connecting them through references.

—_

Definition: A binary search tree (BST) is a binary tree. It may be empty. If it is not empty,then all
nodes follows the below mentioned properties —

e _Every clement has a unique key.

e The keys in a nonempty left subtrec (right subtree) are smaller (larger) than the key in the
root of subtree.

¢ The keys in a nonempty right subtree larger than the key in the root of subtree.

e The left and right subtrees are also binary search trees.

———— ——

. left sub-tree and right sub-tree and can be defined as -

left_subtree (keys) < node (key) < right_subtree (keys)

- R0,
AN A

| BST Basic Operations d
The basic operations that can be performed on binary search tree data structure, are followfng —

e Search — search an element in a binary search tree.

» [Insert —insert an element into a binary search tree / create a tree.

o Delete — Delete an element from a binary search tree.

» Height -- Height of a binary search tree.

Searching a Binary Search Tree
Let an element k is to search in binary search tree. Start search from root node of the search tree. If

root is NULL, search tree contains no nodes and search unsuccessful. Otherwise, compare k with
- e root. If K equals the 1o ot’s key, terminate search, if k is |ess than key value search

17

e ——

Scanned with CamScanner

Scanned with CamScanner



F - ; . TREEg

UNIT- Iv . e
L . s e The function search recursive,

’ .ment k 10 right subtre
clement k in lefl subtree otherwise scarch eleme

scarches the subtrees.
Algorithm:Recursive search of a Binary Search Tree

ree pointer search(tree pointer root, nt key)

|
‘ .
| contains  key. [f there 1S no such

retum a  pointer to the node that
node, retum NULL */
it ('root) return NUI i o
i (key == root->data) return root, -
if (key < root->data)
retum search(root->left_child, key);

retum scarch(root-\right_child.kcy);
| \

Algorithm: Iteraive search of a Binary Search Tree -

tree_pomter search2(tree_pointer tree, int key) —

{
1

while (tree) {
if (key = tree->data) retum tree;
if (key < tree->data)
tree = tree->lefi- child; =
else tree = tree->night -child;
! = .
;

Analysis of Recursive search and lterative Search Algorithms:

L Ifh is the height of the binary search tree, both algorithms perform search in O(h) time. Recursive search requires
additional stack space which is O(h). |
Inserting into a Binary Search Tree |
The very first insertion creates the tree. Afterwards, whenever an element is to be inserted. First

locate its proper location. Start search from root node then if data is less than key value, search
empty location in left sub tree and insert the data. Otherwise search empty location in right sub tree

and insert the data. s

——

18

Scanned with CamScanner

Scanned with CamScanner



Create newnode
If root is NULL
then create root node
return
If root exists then

compare the data with node.data

while until insertion position is located

-

If data is greater than node.data

Insert 80

Insert 35

19

- —

Scanned with CamScanner

Scanned with CamScanner




UNIT- IV | - S -
20to right subtree
else

goto left subtree

endwhile

insert newnode

end If

Implementation

The implementation of insert function should look lif(e this —

void insert(int data) {

struct node *tempNode = (struct node*) malloc(sizeof(struct node));

Struct node *current;

- - _—
— .

struct node *parent;
tempNode->data = data; —
tempNode->leftChild = NULL;
tempNode->rightChild = NULL;
/if tree is empty, create root node
if(root = NULL) { "
root = tempNode;
jelse { o
current = root; ) ; "
parent = NULL; |
while(1) {
parent = current;
//go to left of the tree
if(data < parent->data) {

current = current->leftChild;

//insert to the left ;
if(current == NULL) { = | i
parent->leftChi_ld = tempNode; - | _ ]

20

Scanned with CamScanner

Scanned with CamScanner



= - "mess.' '
) S

llgo to right of the tree

else { | -
~  current = curreni->rightChild;
IInsert to the right » h

if(current == NULL) {

Parent->rightChild = tempNode:
retumn;

Deleting a node

Remove operation on binary search tre
can be divided into two stages:

€ IS more complicated, than insert and search. Basically, in

® scarch for a node to remove

* ifthe node is found, run remove algorithm., -~

Remove algorithm in detail

Now, let's see more detailed description of a remove algorithm. First stage is identical to algorithm

for lookup, except we should track the parent of the current node. Second part is more tricky. There
are three cases, which are described below.

I.Node to be removed has no children. --This case is quite simple. Algorithm sets corresponding
link of the parent to NULL and disposes the node.

= Example. Remove -4 from a BST.

21

Scanned with CamScanner

Scanned with CamScanner



UNIT- IV

2.Node to be removed has one child. In this case, n

ode is cut from the tree and algorithm links

single child (with it's subtree) directly to the parent of the removed node.

GO 30
S &

3.Nlodc to be removed has two ghildrcn. --This is the most complex case. The deleted node can be
replaced by cither largest key in its left subtree or the smallest in its right subtree. Preferably

which node has one child.

Deletion Operation in BST

In a binary search tree, the deletion operation is performed with O(lo
a node from Binary search tree has following three cases...

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

——

g n) time complexity. Deleting

22

R Te— e —

Scanned with CamScanner

Scanned with CamScanner




TREES »

Case 1: Deleting a eaf node

We use the following Steps to delete a leaf node from BST

Step 1: Find the node to be deleted using scarch operation

Step 2: ' ' it
P 2: Delete the node using free function (If it is a leaf) and terminate the function

Case 2: Deleting a node with one child

We use the following steps to delete a node with one child from BST...

Step 1: Find the node to be deleted using scarch operation

Step 2: If it has only one child, then create a link between its parent and c—h.ild nodes.
Step 3: Delete the node using free function and terminate the function.

Case 3: Deleting a node with two children

We use the following steps to delete a node with two children from BST...

Step 1: Find the node to be deleted using search operation

Step 2: If it has two children, then find the largest node in its left subtree (OR) the smallest node in
its right subtree.

Step 3: Swap both deleting node and node which found in above step.

Step 4: Then, check whether deleting node came to case 1 or case 2 else goto steps 2 )

Step 5: If it comes to case 1, then delete using case 1 logic.

Step 6: If it comes to case 2, then delete using case 2 logic.

Step 7: Repeat the same process until node is deleted from the tree.

/* deletion in binary search tree */
void deletion(struct treeNode **node, struct treeNode **parent, int data) {
struct treeNode *tmpNode, *tmpParent;
if (*node == NULL)
return; —
if ((*node)->data == dala
L /* deleting the-leaf node */ |
if(!(*node)->1eﬂ & & '(*node)->right) {

if (parent) { | |
e /* delete leaf node */

»Scanned with CamScanner

Scanned with CamScanner




————— -

CUNIT-IVs - _

if ((*parent)->left = *node)

(*parent)->left = NULL:
= - . clse -

(*parent)->right = NULL;

free(*node);

} else {
_ /* delete root node with no children */
B free(*node);

}

/* deleting node with one child */

} else if (!(*node)->right && (*node)->left) {
/* deleting node with left child alone */

S tmpNode = *node;
(*parent)->right = (*node)->left;
free(tmpNode);

*node = (*parent)->right;

} else if ((*node)->right && !(*node)->left) {
/* deleting node with right child alone */
tmpNode = *node;

(*parent)->left = (*node)->right;
free(tmpNode);
(*node) = (*parent)->left;
} else if (!(*node)->right->left) {
/t
* deleting a node whose right child
* 1s the smallest node in the right
* subtrec for the node to be deleted.

#/ -
tmprde = *node;
(*node)->right->left = (*node)->left;

(*parent)->left = (*node)->right;

free(tmpNode);

*node = (*parent)->lefi;
} else {

/‘

* Deleting a node with two children.
* First, find the smallest node in

* the right subtree. Replace the
- * srhallest node with the node to be

* deleted. Then, do proper connections
* for the children of replaced node.

*/
tmpNode = (*node)->right; _
while (tmpNode->left) { .

24

—— e e e S —————————— et e e

Scanned with CamScanner

Scanned with CamScanner



o

tmpParent = tmpNode;

- .} tmpNode = tmpNode->left:
tmpParent->left = tmpN ode->right;
tmpNode->left = (*node)->left:

_tmpNode->right =(*node)->right;
free(*node);
: *node = tmpNode;

} else if (data < (*node)->data) {
[* traverse towards left subtree */
deletion(&(*node)->lefl, node, data);
) else if (data > (*node)->data) {
/* traversing towards right subtree */
deletion(&(*node)->right, node, data);

’, ’w‘@? B W —— ,

b

\
'

Height of a Binary Search Tree:

Height of a Binary Tree For a trec with just

there are 2
defined to have a height of —1.

The following height function in pseudocode is defined recursively

int height( BinaryTree Node ) X
if tis a null tree
returmm -1;
| hi = height( left subtree of 1);
hr = height( right subtree of t);
h = 1+ maximum of hl and hr;

| ~_/

|
‘; !

3 levels of nodes the height is 1 and so on. A null tree (no nodes except the null n

) ‘/ \

T sl \\
| B jeft subtye ]
il ( o

- >

right subey

TREES -

one node, the root node, the height is defined to be 0, if

ode) 18

B | -

Scanned with CamScanner

Scanned with CamScanner



) - . TREES
UN'T’ IV ’ - . : é > T @ o

left subtree has height 2 and its

S _ . ; 1ts
For example, the followimng tree has a height of 4. 1

right subtree 3.

S N

Example T

Construct a Binary Search Tree by inserting the following sequence of numbers...

10,12,5,4,20,8,7.15 and 13

Above elements are inserted into a Binary Search Tree as follows...

— - ——-——-——-—__——-—-22_

b

Scanned with CamScanner

Scanned with CamScanner



" TREES
Insert (10) .Insert (12) ‘ insert (5)
: 6%
12 5 @
insert (4) insert (20) insert (8)

27

Scanned with CamScanner

Scanned with CamScanner



UNIT-V

GRAPHS

1. BASIC CONCEPTS

INTRODUCTION
A graph is an abstract data structure that is used to implement the mathematical concept of

graphs. It is basically a collection of vertices (also called nodes) and edges that connect these
vertices. A graph is often viewed as a generalization of the tree structure, where instead of
having a purely parent-to-child relationship between tree nodes, any kind of complex

relationship can exist.

WHY GRAPHS ARE USEFUL

Graphs are widely used to model any situation where entities or things are related to each other
in pairs. For example, the following information can be represented by graphs:
e Family trees: in which the member nodes have an edge from parent to each of their
children.

e Transportation networks : in which nodes are airports, intersections, ports, etc. The edges

can be airline flights, one-way roads, shipping routes, etc.

DEFINATION:
A graph G is defined as an ordered set (V, E), where V(G) represents the set of vertices and E(G)
represents the edges that connect these vertices.
We have two types of Graphs. Basically:
1. UNDIRECTED GRAPH
2. DIRECTED GRAPH
UNDIRECTED GRAPH:
Shows a graph with V(G) = {A, B, C, D and E} and E(G) = {(A, B), (B, C), (A, D), (B, D),
(D,E), (C, E)}. Note that there are five vertices or nodes and six edges in the graph.



FIGURE 5.1

A graph can be directed or undirected. In an undirected graph, edges do not have any direction

associated with them. That is, if an edge is drawn between nodes A and B, then the nodes can be

traversed from A to B as well as from B to A. Figure 5.1 shows an undirected graph because it

does not give any information about the direction of the edges.

DIRECTED GRAPH:

A directed graph G, also known as a digraph, is a graph in which every edge has a direction

assigned to it. An edge of a directed graph is given as an ordered pair (u, v) of nodes in G. For an

edge (u, v),

The edge begins at u and terminates at v.

u is known as the origin or initial point of e. Correspondingly, v is known as the
destination or terminal point of e.

u is the predecessor of v. Correspondingly, v is the successor of u.

Nodes u and v are adjacent to each other.

)

FIGURE 5.2

Which shows a directed graph. In a directed graph, edges form an ordered pair. If there is an
edge from A to B, then there is a path from A to B but not from B to A. The edge (A, B) is said

to initiate from node A (also known as initial node) and terminate at node B (terminal node).



2. REPRESENTATION OF GRAPHS

There are two common ways of storing graphs in the computer’s memory. They are:

e Sequential representation by using an adjacency matrix.

e Linked representation by using an adjacency list that stores the neighbours of a node

using a linked list.
ADJACENCY MATRIX REPRESENTATION

An adjacency matrix is used to represent which nodes are adjacent to one another.
By definition: Two nodes are said to be adjacent if there is an edge connecting them.
In a directed graph G, if node v is adjacent to node u, then there is definitely an edge from u to v.
That is, if v is adjacent to u, we can get from u to v by traversing one edge. For any graph G having
n nodes, the adjacency matrix will have the dimension of n X n.
In an adjacency matrix, the rows and columns are labelled by graph vertices.

e An entry aij in the adjacency matrix will contain 1, if vertices vi and vj are adjacent to
each other.

e However, if the nodes are not adjacent, aij will be set to zero.

e 1 [if v, is adjacent to v,, that is
35 there is an edge (v;, v;)]A

NG

0 [otherwise]

FIGURE 5.3 Adjacency Matrix Entry

Since an adjacency matrix contains only 0s and 1s, it is called a bit matrix or a Boolean matrix.

The entries in the matrix depend on the ordering of the nodes in G. Therefore, a change in the

order of nodes will result in a different adjacency matrix.



ABCDE : KEED
A[01010]
A)—>(B)«—C) Ove A0 10 1
B[00010
clo1o0o0 ’*‘ BI0O111
cl1001
@0 Wonl|&® L.
(a) Directed graph (b) Directed graph with loop
A B ABCDE
(A—(B)—(C) A[0 1 A[04020
B/10 Bl00O70
clo 1 clos5000
(o) —E) D[1 1 D|00003
EL0 O ELO0100
(c) Undirected graph (d) Weighted graph

Figure 5.4 shows some graphs and their corresponding adjacency matrices.

From the above examples, we can draw the following conclusions:

For a simple graph (that has no loops), the adjacency matrix has Os on the diagonal.

The adjacency matrix of an undirected graph is symmetric.

The memory use of an adjacency matrix is O(n2), where n is the number of nodes in the
graph.

Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of
edges in the graph.

The adjacency matrix for a weighted graph contains the weights of the edges connecting
the nodes.

Now let us discuss the powers of an adjacency matrix:

From adjacency matrix A1, we can conclude that an entry 1 in the ith row and jth column means

that there exists a path of length 1 from Vi to Vj. Now consider, A2, A3, and A4.

Any entry dij = 1 if dik = dkj = 1. That is, if there is an edge (Vi, Vk) and (Vk, Vj), then there is a

path from vi to vj of length 2.

OO m >

o0 oOor
00 -
OO0 =
O = =00

FIGURE 5.5 Directed graph with its adjacency matrix



T T 0 o1l 1 8l o8 1 2
N T
P X =

0 0 0 O
T 1 & U T oe | m E
g o 1 21 e 1 1 O [@ 2 4 1]

W o A U S i R i S
A’: X —

I I @ BI7e 0 0 11 |16 1 2 13
T I 21 X T bL2XE 3
2 28 1] o g a2 9 I'E g3 & 2

I 2 23 09 % 11 |11 8 5.4
A= X =

a 1 21 Ipag e 1l £ 2 3
T 223 |ra w9 34 8 4

Now, based on the above calculations, we define matrix B as:

Br=Al +A2 + A3 +..+Al

o 1 [if there is a path from v, to v.]

T

0 [otherwise]

FIGURE 5.6 Path Matrix Entry
The main goal to define matrix B is to obtain the path matrix P. The path matrix P can be
calculated from B by setting an entry Pij = 1, if Bij is non-zero and Pij = 0, if otherwise. The path
matrix is used to show whether there exists a simple path from node vi to vj or not.

Let us now calculate matrix B and matrix P using the above discussion.



| . == <o R <o

-

1 1 0 & O T 2 2 2 01 1 3 4 2 36 6 5

0 1 1 1. 1 @ 1 k 2 2 1 1 2 3 4 8§ & & 7
+ + + =

0 0 1 1 1090 0 1 2 1 1 1 13 2. 3% 3 §

1 @ 9] [k 1:2 13 |4 Z2 23| |3 & 24| |68 7 8§

Now the path matrix P can be given as:

e Y = S -y
[ S U S -
T S m—y

pumd jemh b b

ADJACENCY LINKED LIST REPRESEENTATION

An adjacency list is another way in which graphs can be represented in the computer’s
memory.

This structure consists of a list of all nodes in G.

Furthermore, every node is in turn linked to its own list that contains the names of all
other nodes that are adjacent to it.

The key advantages of using an adjacency list are:

It is easy to follow and clearly shows the adjacent nodes of a particular node.

It is often used for storing graphs that have a small-to-moderate number of edges. That is,
an adjacency list is preferred for representing sparse graphs in the computer’s memory;
otherwise, an adjacency matrix is a good choice.

Adding new nodes in G is easy and straightforward when G is represented using an
adjacency list. Adding new nodes in an adjacency matrix is a difficult task, as the size of

the matrix needs to be changed and existing nodes may have to be reordered.



—>1B| T C[X]

—>»1C| D[ X]
[D]X]

—>A] B[ X]

oO|m| >

FIGURE 5.7 Graph G and its adjacency list

e For a directed graph, the sum of the lengths of all adjacency lists is equal to the number

of edges in G.

e However, for an undirected graph, the sum of the lengths of all adjacency lists is equal to

twice the number of edges in G because an edge (u, v) means an edge from node u to v as

well as an edge from v to u.

e Adjacency lists can also be modified to store weighted graphs.

Let us now see an adjacency list for an undirected graph as well as a weighted graph.

®—E—©
¥

(Undirected graph)

[m[o]o]w]>]

—>1B| +—>{D[X]
—>1A| €] 5>D[X]
—>B| 4> E[X]
—>A| +—>1B] > E[X]
—>1C| +—>1D[X]

(Weighted graph)
FIGURE 5.8 Adjacency list for an undirected graph and a weighted graph

—>»B[4] T>D[2][X]
(D[7]X]

mi o
el [on
][

[m[o]ow]>]

O
E
B



PROGRAMMING EXAMPLE

1. Write a program to create a graph of n vertices using an adjacency list. Also write the
code to read and print its information and finally to delete the graph.
#include <stdio.h>

#include <conio.h>

#include <alloc.h>

struct node

{

char vertex;

struct node *next;

j

struct node *gnode;

void displayGraph(struct node *adj[], int no_of_nodes);
void deleteGraph(struct node *adj[], int no_of _nodes);
void createGraph(struct node *adj[], int no_of _nodes);
int main()

{

struct node *Adj[10];

int i, no_of_nodes;

clrscr();

printf(*\n Enter the number of nodes in G: ");
scanf("%d", &no_of nodes);

for(i=0; i <no_of nodes; i++)

Adj[i] = NULL;

createGraph(Adj, no_of_nodes);

printf("\n The graph is: );

displayGraph(Adj, no_of nodes);

deleteGraph(Adj, no_of nodes);

getch();

return O;

¥



void createGraph(struct node *Adj[], int no_of_nodes)
{

struct node *new_node, *last;

inti, j, n, val;

for(i=0; i <no_of nodes; i++)

{

last = NULL;

printf(*\n Enter the number of neighbours of %d: ", i);
scanf("%d", &n);

for(j=1;j<=n; j++)

{

printf(*\n Enter the neighbour %d of %d: ", j, i);
scanf("%d", &val);

new_node = (struct node *) malloc(sizeof(struct node));
new_node —> vertex = val,

new_node —> next = NULL;

if (Adj[i] == NULL)

Adj[i] = new_node;

else

last —> next = new_node;

last = new_node

}

}

}
void displayGraph (struct node *Adj[], int no_of nodes)

Graphs 393

{

struct node *ptr;

int i;

for(i=0; i <no_of nodes; i++)

{



ptr = Adj[i];

printf(*\n The neighbours of node %d are:", i);
while(ptr 1= NULL)

{

printf(*\t%d", ptr —> vertex);

ptr = ptr —> next;

}

}

}

void deleteGraph (struct node *Adj[], int no_of_nodes)
{

int i;

struct node *temp, *ptr;

for(i = 0; i <= no_of_nodes; i++)

{

ptr = Adj[i];

while(ptr ! = NULL)

{

temp = ptr;

ptr = ptr —> next;

free(temp);

}

Adj[i] = NULL;

}

}

Output

Enter the number of nodes in G: 3
Enter the number of neighbours of 0: 1
Enter the neighbour 1 of 0: 2

Enter the number of neighbours of 1: 2
Enter the neighbour 1 of 1: 0



Enter the neighbour 2 of 1: 2

Enter the number of neighbours of 2: 1
Enter the neighbour 1 of 2: 1

The neighbours of node 0 are: 1

The neighbours of node 1 are: 0 2

The neighbours of node 2 are: 0

Note If the graph in the above program had been a weighted graph, then the structure of the node
would have been:

typedef struct node

{

int vertex;

int weight;

struct node *next;

)2

3.GRAPH TRAVERSALS
There are two standard methods of graph traversal. These two methods are:

1. Breadth-first search
2. Depth-first search

1. Breadth-First Search Algorithm

Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores
all the neighbouring nodes. Then for each of those nearest nodes, the algorithm explores their
unexplored neighbour nodes, and so on, until it finds the goal.

ALGORITHM

Step 1: SET STATUS =1 (ready state)

for each node in G

Step 2: Enqueue the starting node A

and set its STATUS =2

(waiting state)

Step 3: Repeat Steps 4 and 5 until QUEUE is empty



Step 4: Dequeue a node N. Process it
and set its STATUS =3

(processed state).

Step 5: Enqueue all the neighbours of
N that are in the ready state

(whose STATUS =1) and set

their STATUS =2

(waiting state)

[END OF LOOP]
Step 6: EXIT
Adjacency lists
A'B,C,D
B:E
C:B,G
D:C,G
E:C,F
F:CH
G:F,H,I
H:E, |
I:F
FIGURE 5.9 Graph G And Its Adjacnecy List
EXAMPLE

Consider the graph G given in Fig. 5.9.The adjacency list of G is also given. Assume that G
represents the daily flights between different cities and we want to fly from city A to | with
minimum stops. That is, find the minimum path P from A to | given that every edge has a length
of 1.
SOLUTION:
The minimum path P can be found by applying the breadth-first search algorithm that begins at
city A and ends when 1 is encountered. During the execution of the algorithm, we use two arrays:
1. QUEUE
2. ORIG
e While QUEUE is used to hold the nodes that have to be processed,
e ORIG is used to keep track of the origin of each edge.
e Initially, FRONT = REAR =-1.



The algorithm for this is as follows:
(@) Add A to QUEUE and add NULL to ORIG.

FRONT =0 QUEUE = A

REAR = 0ORIG =\0
(b) Dequeue a node by setting FRONT = FRONT + 1 (remove the FRONT element of QUEUE)
and enqueue the neighbours of A. Also, add A as the ORIG of its neighbours.

FRONT =1QUEUE=ABCD

REAR =3O0ORIG =\0AAA
(c) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also,
add B as the ORIG of its neighbours.

FRONT=2QUEUE=ABCDE

REAR = 40RIG =\0AAAB
(d) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of C. Also,
add C as the ORIG of its neighbours. Note that C has two neighbours B and G. Since B has
already been added to the queue and it is not in the Ready state, we will not add B and only add
G.

FRONT=3QUEUE=ABCDEG

REAR =50RIG =\W0AAABC
(e) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of D. Also,
add D as the ORIG of its neighbours. Note that D has two neighbours C and G. Since both of
them have already been added to the queue and they are not in the Ready state, we will not add
them again.

FRONT=4QUEUE=ABCDEG

REAR =50RIG =\0AAABC
(f) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also,
add E as the ORIG of its neighbours. Note that E has two neighbours C and F. Since C has
already been added to the queue and it is not in the Ready state, we will not add C and add only
F.

FRONT=5QUEUE=ABCDEGF

REAR =60ORIG =\0AAABCE



(9) Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of G. Also,
add G as the ORIG of its neighbours. Note that G has three neighbours F, H, and 1.

FRONT =6 QUEUE=ABCDEGFHI

REAR =90RIG =\W0AAABCEGG

Since F has already been added to the queue, we will only add H and I. As | is our final
destination, we stop the execution of this algorithm as soon as it is encountered and added to the
QUEUE. Now, backtrack from I using ORIG to find the minimum path P. Thus, we have
PasA->C->G->1.

Features of Breadth-First Search Algorithm

Space complexity:

The space complexity is therefore proportional to the number of nodes at the deepest
level of the graph.

Given a graph with branching factor b (number of children at each node) and depth d, the
asymptotic space complexity is the number of nodes at the deepest level O(®).

The space complexity can also be expressed as O (|E |+ |V |), where | E | is the total
number of edges in G and | V | is the number of nodes or vertices.

Time Complexity:

In the worst case, breadth-first search has to traverse through all paths to all possible
nodes, thus the time complexity of this algorithm asymptotically approaches O(").

However, the time complexity can also be expressed as O( | E | + | V | ), since every
vertex and every edge will be explored in the worst case.

Completeness:

Breadth-first search is said to be a complete algorithm because if there is a solution,
breadth-first search will find it regardless of the kind of graph. But in case of an infinite graph
where there is no possible solution, it will diverge.

Optimality:

Breadth-first search is optimal for a graph that has edges of equal length, since it always
returns the result with the fewest edges between the start node and the goal node.

we have weighted graphs that have costs associated with each edge, so the goal next to

the start does not have to be the cheapest goal available.



Applications of Breadth-First Search Algorithm
Breadth-first search can be used to solve many problems such as:
e Finding all connected components in a graph G.
e Finding all nodes within an individual connected component.
e Finding the shortest path between two nodes, u and v, of an unweighted graph.

e Finding the shortest path between two nodes, u and v, of a weighted graph.

Programming Example

2. Write a program to implement the breadth-first search algorithm.
#include <stdio.h>

#define MAX 10

void breadth_first_search(int adj[][MAX],int visited[],int start)
{

int queue[MAX],rear = -1,front =1, i;

queue[++rear] = start;

visited[start] = 1;

while(rear !=front)

{

start = queue[++front];

if(start == 4)

printf("5\t");

else

printf("%c \t",start + 65);

for(i=0; i < MAX; i++)

{



if(adj[start][i] == 1 && visited[i] == 0)
{

queue[++rear] =i;

visited[i] = 1;

}

}

}

}

int main()

{

int visited[MAX] = {0};

int adj[MAX][MAX], i, j;
printf("\n Enter the adjacency matrix: ");
for(i=0; i < MAX; i++)

for(j = 0; j < MAX; j++)
scanf("%d", &adj[i][j]);
breadth_first_search(adj,visited,0);
return O;

}

Output

Enter the adjacency matrix:
01010

10110

01001

11001

00110

ABDCE



2. Depth First Algorithm
The depth-first search algorithm progresses by expanding the starting node of G and then going
deeper and deeper until the goal node is found, or until a node that has no children is
encountered.
When a dead-end is reached, the algorithm backtracks, returning to the most recent node that has
not been completely explored.
Algorithm
Step 1: SET STATUS =1 (ready state) for each node in G
Step 2: Push the starting node A on the stack and set
its STATUS = 2 (waiting state)
Step 3: Repeat Steps 4 and 5 until STACK is empty
Step 4: Pop the top node N. Process it and set its
STATUS = 3 (processed state)
Step 5: Push on the stack all the neighbours of N that
are in the ready state (whose STATUS = 1) and
set their STATUS = 2 (waiting state)
[END OF LOOP]
Step 6: EXIT

djacency lists
- C. D

"IITlc)(;)

Al
A
B:
C:
D:
E.
F:
G
H:
I:

-"m-nOOowmw

FIGURE 5.10 Graph G And Its Adjacency List
Example:
Consider the graph G given in. The adjacency list of G is also given. Suppose we want to print
all the nodes that can be reached from the node H (including H itself). One alternative is to use a

depth-first search of G starting at node H. The procedure can be explained here.



Solution:
(@) Push H onto the stack.
STACK: H
(b) Pop and print the top element of the STACK, that is, H. Push all the neighbours of H onto the
stack that are in the ready state. The STACK now becomes
PRINT: H STACK: E, I

(c) Pop and print the top element of the STACK, that is, I. Push all the neighbours of I onto the
stack that are in the ready state. The STACK now becomes
PRINT: | STACK: E, F

(d) Pop and print the top element of the STACK, that is, F. Push all the neighbours of F onto the
stack that are in the ready state. (Note F has two neighbours, C and H. But only C will be added,
as H is not in the ready state.) The STACK now becomes

PRINT: F STACK:E, C

e) Pop and print the top element of the STACK, that is, C. Push all the neighbours of C onto the
stack that are in the ready state. The STACK now becomes
PRINT: C STACK: E, B, G

(f) Pop and print the top element of the STACK, that is, G. Push all the neighbours of G onto the
stack that are in the ready state. Since there are no neighbours of G that are in the ready state,
no push operation is performed. The STACK now becomes

PRINT: G STACK: E, B

(9) Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the
stack that are in the ready state. Since there are no neighbours of B that are in the ready state,
no push operation is performed. The STACK now becomes

PRINT: B STACK: E



h) Pop and print the top element of the STACK, that is, E. Push all the neighbours of E onto the
stack that are in the ready state. Since there are no neighbours of E that are in the ready state,
no push operation is performed. The STACK now becomes empty.

PRINT: E STACK:

Since the STACK is now empty, the depth-first search of G starting at node H is complete and
the nodes which were printed are:

H I,F,C G,B,E

These are the nodes which are reachable from the node H.

Features of Depth-First Search Algorithm

Space complexity:

The space complexity of a depth-first search is lower than that of a breadth first search.

Time complexity:

The time complexity of a depth-first search is proportional to the number of vertices plus the
number of edges in the graphs that are traversed. The time complexity can be given as
(O(IVI+IED).

Completeness:

Depth-first search is said to be a complete algorithm. If there is a solution, depthfirst search will
find it regardless of the kind of graph. But in case of an infinite graph, where there is no possible

solution, it will diverge.

Applications of Depth-First Search Algorithm
Depth-first search is useful for:

Finding a path between two specified nodes, u and v, of an unweighted graph.

Finding a path between two specified nodes, u and v, of a weighted graph.

Finding whether a graph is connected or not.

Computing the spanning tree of a connected graph.



Programming Example:

3. Write a program to implement the depth-first search algorithm.
#include <stdio.h>

#define MAX'5

void depth_first_search(int adj[][MAX],int visited[],int start)

{
int stack[ MAX];
int top =-1, i;

printf("%c—",start + 65);
visited[start] = 1;
stack[++top] = start;
while(top ! = -1)

{

start = stack[top];
for(i=0; i < MAX; i++)
{

if(adj[start][i] && visited[i] == 0)
{

stack[++top] = 1i;
printf("%c-", i + 65);
visited[i] = 1;

break;

}

}

if(i == MAX)

top—;

}

}

int main()

{
int adj[MAX][MAX];



int visited[MAX] = {0}, i, j;

400 Data Structures Using C
printf(*\n Enter the adjacency matrix: ");
for(i=0; i < MAX; i++)

for(j = 0; j < MAX; j++)
scanf("%d", &adj[i][j]);
printf("DFS Traversal: ");
depth_first_search(adj,visited,0);
printf(*\n™);

return 0;

}

Output

Enter the adjacency matrix:
01010

10110

01001

11001

00110

DFS Traversal: A—>C —>E —>

APPLICATIONS
MINIMUM SPANNING TREES:

e A spanning tree of a connected, undirected graph G is a sub-graph of G which is a tree

that connects all the vertices together

e A graph G can have many different spanning trees.

e We can assign weights to each edge (which is a number that represents how unfavourable
the edge is), and use it to assign a weight to a spanning tree by calculating the sum of the
weights of the edges in that spanning tree.

e A minimum spanning tree (MST) is defined as a spanning tree with weight less than or
equal to the weight of every other spanning tree. In other words, a minimum spanning



tree is a spanning tree that has weights associated with its edges, and the total weight of

the tree (the sum of the weights of its edges) is at a minimum.

Example: Consider an unweighted graph G given below (Fig. 5.11). From G, we can draw many
distinct spanning trees. Eight of them are given here. For an unweighted graph, every spanning

tree is a minimum spanning tree.

X

(Unweighted graph)
®—®)

-~

C) D

FIGURE 5.11 Unweighted Graph And Its Spanning Trees

EXAMPLE: Consider a weighted graph G shown in Fig. 5.12. From G, we can draw three
distinct spanning trees. But only a single minimum spanning tree can be obtained, that is, the one
that has the minimum weight (cost) associated with it. Of all the spanning trees given in Fig.
5.12, the one that is highlighted is called the minimum spanning tree, as it has the lowest cost

associated with it.

®>0® | ® ® | &
4 7 6 5
-0 | ©-0O | @G0
(Total cost = 12) (Totalcostw9) | (Total cost = 15) | (Total cost = 10)
3 3 3
® & 6a——® ove &—&)
- 5 4| 7 7X5 5|6
-0 © Ol | © ©
(Total cost = 11) | (Total cost = 14) | (Total cost = 15) | (Total cost = 14)

FIGURE 5.12 Weighted Graph And Its Spanning Trees.



APPLICATIONS FOR MINIMUM SPANNING TREES:

MST’S is widely used for designing networks.

MST’S are used to find airlane routes.

MST’S are also used to find the cheapest way to connect terminals, such as cities,
electronic components or computers via roads, airlines, railways, wires or telephone lines.

MST’S are applied in routing algorithms for finding the most efficient path.

We have two types of ALGORITHMS in Minimum Spanning Trees. They are:

1. PRIM’S ALGORITHM
2. KRUSKAL’S ALGORITHM

LPRIM’SALGORITHM

Prim’s algorithm is a greedy algorithm that is used to form a minimum spanning tree for
a connected weighted undirected graph.

In other words, the algorithm builds a tree that includes every vertex and a subset of the
edges in such a way that the total weight of all the edges in the tree is minimized.

For this, the algorithm maintains three sets of vertices which can be given as below:

Tree vertices Vertices that are a part of the minimum spanning tree T.

Fringe vertices Vertices that are currently not a part of T, but are adjacent to some tree
vertex.

Unseen vertices Vertices that are neither tree vertices nor fringe vertices fall under this
category.

ALGORITHM

Step 1: Select a starting vertex

Step 2: Repeat Steps 3 and 4 until there are fringe vertices

Step 3: Select an edge e connecting the tree vertex and

fringe vertex that has minimum weight

Step 4: Add the selected edge and the vertex to the

minimum spanning tree T
[END OF LOOP]

Step 5: EXIT



EXAMPLE: Construct a minimum spanning tree of the graph given in Fig. 5.13

/’\ 11 /E\
J b

\/ 10

FIGURE 5.13
Step 1: Choose a starting vertex A.
Step 2: Add the fringe vertices (that are adjacent to A). The edges connecting the vertex and
fringe vertices are shown with dotted lines.
Step 3: Select an edge connecting the tree vertex and the fringe vertex that has the minimum
weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge
connecting A and C has less weight, add C to the tree. Now C is not a fringe vertex but a tree
vertex.
Step 4: Add the fringe vertices (that are adjacent to C).
Step 5: Select an edge connecting the tree vertex and the fringe vertex that has the minimum
weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge
connecting C and B has less weight, add B to the tree. Now B is not a fringe vertex but a tree
vertex.
Step 6: Add the fringe vertices (that are adjacent to B).
Step 7: Select an edge connecting the tree vertex and the fringe vertex that has the minimum
weight and add the selected edge and the vertex to the minimum spanning tree T. Since the
edge connecting B and D has less weight, add D to the tree. Now D is not a fringe vertex but a
tree vertex.
Step 8: Note, now node E is not connected, so we will add it in the tree because a minimum
spanning tree is one in which all the n nodes are connected with n—1 edges that have minimum

weight. So, the minimum spanning tree can now be given as,



Step 1

® /'B\il.@ )

3| 4
/C C)-512) '/D\

Step 6

2. KRUSKAL’S ALGORITHM

e Kruskal’s algorithm is used to find the minimum spanning tree for a connected weighted

graph.

e The algorithm aims to find a subset of the edges that forms a tree that includes every

J.-O

c
Step 3
Q&\
3
C)
Step 7

&L® ® ®
3 4 # { /
(‘3)"1“6(0) S50
Step 4 Step 5
®—®
3| 4 g

(C/ Y
Step 8

vertex. The total weight of all the edges in the tree is minimized.

e However, if the graph is not connected, then it finds a minimum spanning forest. Note
that a forest is a collection of trees. Similarly, a minimum spanning forest is a collection
of minimum spanning trees.

e Kiruskal’s algorithm is an example of a greedy algorithm, as it makes the locally optimal

choice at each stage with the hope of finding the global optimum.

ALGORITHM

Step 1: Create a forest in such a way that each graph is a separate

tree.

Step 2: Create a priority queue Q that contains all the edges of the

graph.

Step 3: Repeat Steps 4 and 5 while Q is NOT EMPTY

Step 4: Remove an edge from Q



Step 5: IF the edge obtained in Step 4 connects two different trees,
then Add it to the forest (for combining two trees into one
tree).

ELSE
Discard the edge
Step 6: END

EXAMPLE: Apply Kruskal’s algorithm on the graph given in Fig. 5.14.
Initially, we have F = {{A}, {B}, {C}, {D}, {E}, {F}}

MST = {}

Q={(A, D). (E,F),(C,E) (ED)(C, D), (D,F),

(A, C), (A, B), (B, C)}
(A
7 ]z\/
oL J—E
3| 4 5

FIGURE5.14
Step 1: Remove the edge (A, D) from Q and make the following changes:

20

A
/jej
8 - =
(5—|C/ D)
o ¥ F
'a
=

4
E3

F={{A D}, {B}, {C}, {E}, {F}}
MST ={A, D}

Q={( F), (C, E), (E D), (C, D),
(D, F), (A, C), (A, B), (B, C)}



Step 2: Remove the edge (E, F) from Q and make the following changes:

F={{A D} {B} {C}.{E, F}}
MST = {(A, D), (E, F)}
Q={(C,E). (£, D), (C,D), (D, F),
(A C), (A, B), (B, C)}

Step 3: Remove the edge (C, E) from Q and make the following changes:

F={{A D}, {B} {C E F}}

MST = {(A, D), (C, E), (E, F)}

Q = {(E, D), (C, D), (D, F), (A, C),
(A, B), (B, C)}

Step 4: Remove the edge (E, D) from Q and make the following changes:

F={{A C,D,E F}, {B}}
MST ={(A, D), (C, E), (E, F), (E, D)}
Q={(C, D), (B, F), (A, C), (A, B), (B, C)}



Step 5: Remove the edge (C, D) from Q. Note that this edge does not connect different trees, so
simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.
Therefore,
F={{A, C, D, E F}, {B}}
MST ={(A, D), (C,E), (E, F), (E, D)}
Q={(D., F), (A C). (A B) (B, C)}
Step 6: Remove the edge (D, F) from Q. Note that this edge does not connect different trees, so
simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.
F={{A C,D,E F}, {B}}
MST ={(A, D), (C,E), (E, F), (E, D)}
Q={(A.C), (A, B),(B,C)}
Step 7: Remove the edge (A, C) from Q. Note that this edge does not connect different trees, so
simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.
F={{A, C,D,E F}, {B}}
MST ={(A, D), (C,E), (E, F), (E, D)}
Q={(AB), (B, C)}
Step 8: Remove the edge (A, B) from Q and make the following changes:

F={A B,C,D,E F}

MST ={(A, D), (C, E), (E, F), (E,D),
(A, B)}

Q={(B,C)}



Step 9: The algorithm continues until Q is empty. Since the entire forest has become one tree, all

the remaining edges will simply be discarded. The resultant MS can be given as shown below

A
7 /\
Ve =~
&) @ D)
3 4
=
E—=&)

F={A B,C,D,E F}

MST = {(A, D), (C,E), (E, F), (E\D),
(A, B)}

Q={}

PROGRAMMING EXAMPLE:
5. Write a program which finds the cost of a minimum spanning tree.
#include<stdio.h>
#include<conio.h>
#define MAX 10
int adj[MAX][MAX], tree[MAX][MAX], n;
void readmatrix()
{
inti, j;
printf(“\n Enter the number of nodes in the Graph : );
scanf(“%d”, &n);
printf(“\n Enter the adjacency matrix of the Graph”);
for (i=1;1<=n; i++)
for (j = 1;j <=n; j++)
scanf(“%d”, &adj[i][j]);
}
int spanningtree(int src)
{



int visited[MAX], d[MAX], parentfMAX];
int i, j, k, min, u, v, cost;

for(i=1;i<=n;i++)

{

d[i] = adj[src][i];
visited[i] = 0;
parent[i] = src;

}

visited[src] = 1;
cost = 0;

k=1;
for(i=1;i<n;it++)
{

min = 9999;

for j=1;j<=n;j++)
{

if (visited[j]==0 && d[j] < min)
{

min =d[j];

u=j;

cost +=d[u];

}

}

visited[u] = 1;

/lcost = cost + d[u];

tree[k][1] = parent[u];

tree[k++][2] = u;

for (v=1;v<=n;v++)

if (visited[v]==0 && (adj[u][V] < d[V]))
{

d[v] = adj[u][vI;



parent[v] = u;

}

}

return cost;

}

void display(int cost)

{

inti;

printf(“\n The Edges of the Mininum Spanning Tree are”);
for(i=1;i<n;i++)

printf(“ %d %d \n”, tree[i][1], tree[i][2]);
printf(“\n The Total cost of the Minimum Spanning Tree is : %d”, cost);
}

main()

{

int source, treecost;

readmatrix();

printf(“\n Enter the Source : *);
scanf(“%d”, &source);

treecost = spanningtree(source);
display(treecost);

return 0;

¥



Output

Enter the number of nodes in the Graph : 4

Enter the adjacency matrix: 0110

0001

0100

1010

Enter the source : 1

The edges of the Minimum Spanning Tree are 1 4
42

23

The total cost of the Minimum Spanning Tree is : 1

Dijkstra’s Algorithm

Dijkstra’s algorithm, given by a Dutch scientist Edsger Dijkstra in 1959, is used to find the
shortest path tree. This algorithm is widely used in network routing protocols, most notably IS-IS
and OSPF (Open Shortest Path First).

Given a graph G and a source node A, the algorithm is used to find the shortest path (one having
the lowest cost) between A (source node) and every other node. Moreover, Dijkstra’s algorithm
is also used for finding the costs of the shortest paths from a source node to a destination node.
For example, if we draw a graph in which nodes represent the cities and weighted edges
represent the driving distances between pairs of cities connected by a direct road, then Dijkstra’s

algorithm when applied gives the shortest route between one city and all other cities.

ALGORITHM
e Dijkstra’s algorithm is used to find the length of an optimal path between two nodes in a
graph.
e The term optimal can mean anything, shortest, cheapest, or fastest.

e If we start the algorithm with an initial node, then the distance of a node Y can be given
as the distance from the initial node to that node.



1. Select the source node also called the initial node

2. Define an empty set N that will be used to hold nodes to which a shortest path has been found.
3. Label the initial node with , and insert it into N.

4. Repeat Steps 5 to 7 until the destination node is in N or there are no more labelled nodes in N.

5. Consider each node that is not in N and is connected by an edge from the newly inserted node.
6. (a) If the node that is not in N has no label then SET the label of the node = the label of the
newly inserted node + the length of the edge.

(b) Else if the node that is not in N was already labelled, then SET its new

label = minimum (label of newly inserted vertex + length of edge, old label)

7. Pick anode not in N that has the smallest label assigned to it and add it

to N.

Dijkstra’s algorithm labels every node in the graph where the labels represent the distance

(cost) from the source node to that node.

There are two kinds of labels: temporary and permanent.

Temporary labels are assigned to nodes that have not been reached, while permanent labels are
given to nodes that have been reached and their distance (cost) to the source node is known. A
node must be a permanent label or a temporary label, but not both.

The execution of this algorithm will produce either of the following two results:

1. If the destination node is labelled, then the label will in turn represent the distance from the
source node to the destination node.

2. If the destination node is not labelled, then there is no path from the source to the destination

node.

EXAMPLE:
Consider the graph G given in Fig. 5.14. Taking D as the initial node, execute the Dijkstra’s
algorithm on it.



FIGURE 5.14

Step 1: Set the label of D =0 and N = {D}.

Step 2: Label of D =0, B =15, G =23, and F = 5. Therefore, N ={D, F}.

Step 3: Label of D =0, B = 15, G has been re-labelled 18 because minimum

(5 + 13, 23) = 18, C has been re-labelled 14 (5 + 9). Therefore, N = {D,

F, C}.

Step 4: Label of D =0, B =15, G = 18. Therefore, N = {D, F, C, B}.

Step 5: Label of D =0, B=15, G=18 and A = 19 (15 + 4). Therefore, N =

{D,F, C, B, G}.

Step 6: Label of D = 0 and A = 19. Therefore, N={D, F, C, B, G, A}

Note that we have no labels for node E; this means that E is not reachable from D. Only the
nodes that are in N are reachable from B.

The running time of Dijkstra’s algorithm can be given as O(|V|2+|E[)=O(]V|2) where V is the set

of vertices and E in the graph.



Warshall’s Algorithm

If a graph G is given as G=(V, E), where V is the set of vertices and E is the set of edges, the
path matrix of G can be found as, P=A+ A2 + A3 + ... + An.

This is a lengthy process, so Warshall has given a very efficient algorithm to calculate the path

matrix. Warshall’s algorithm defines matrices PO, P1, P2, °, Pn.

. [if there is a path from v; to v;.
B EL At = The path should not use any
«[1103] other nodes except v,, v,, ..., v,]

N [otherwise]

Path Matrix Entry
e This means that if PO[i][j] = 1, then there exists an edge from node vi to vj.
« If P1[i][j] = 1, then there exists an edge from vi to vj that does not use any other vertex
except vi.
Hence, the path matrix Pn can be calculated with the formula given as:
PK[i]0] = Pk-1[i]0]1 V (Pk=1[i][K] ™ Pk-1[K][i])

where V indicates logical OR operation and / indicates logical AND operation.

ALGORITHM

Step 1: [ the Path Matrix] Repeat Step 2 for | =to n-1,
where n is the number of nodes in the graph
Step 2: Repeat Step 3 for J = to n-1
Step 3: IF A[I][J] =, then SET P[I][J] =
ELSE P[I][J] = 1
[END OF LOOP]
[END OF LOOP]
Step 4: [Calculate the path matrix P] Repeat Step 5 for K =to n-1
Step 5: Repeat Step 6 for | =to n-1



Step 6: Repeat Step 7 for J=to n-1
Step 7: SET P [1][3]1 =P [1][J] V (P [1[K]
P [KI[JD)
Step 8: EXIT
EXAMPLE:
Consider the graph in Fig. 13.39 and its adjacency matrix A. We can straightaway calculate the

path matrix P using the Warshall’s algorithm. The path matrix P can be given in a single step as:

A. B€xT)
ABCD AN 17T 1)
A0 110
B[0OO11 p= Bl 1 11
ciooo01 &l & % }§
D\1100)

Bl # 1 Iy

GRAPH G AND ITS PATH MATRIX

PROGRAMMING EXAMPLE

6. Write a program to implement Warshall’s algorithm to find the path matrix.
#include <stdio.h>

#include <conio.h>

void read (int mat[5][5], int n);

void display (int mat[5][5], int n);

void mul(int mat[5][5], int n);

int main()

{

int adj[5][5], P[51[5], n, i, j, k;

clrscr();

printf("\n Enter the number of nodes in the graph : ");
scanf("%d", &n);

printf(*\n Enter the adjacency matrix : *);

read(adj, n);



clrscr();
printf(*\n The adjacency matrix is : ");
display(adj, n);

for(i=0;i<n;i++)

{
for(j=0;j<n;j++)
{

if(adj[i][i] == 0)
P[]l = 0;

else

PLIILT = 1;

}

}

for(k=0; k<n;k++)
{
for(i=0;i<n;i++)
{

for(j=0;j<n;j++)
P[i101 = POIOT | (POTIK] & PIKIO);
}

¥
printf("\n The Path Matrix is :");

display (P, n);

getch();

return O,

}

void read(int mat[5][5], int n)
{

inti, j;

for(i=0;i<n;i++)

{



for(j=0;j<n;j++)

{

printf("\n mat[%d][%d] =", i, );
scanf("%d", &mat[i][j]);
}

}

}

void display(int mat[5][5], int n)
{

inti, j;

for(i=0;i<n;i++)
printf(*\n");
for(j=0;j<n;j++)
printf("%d\t", mat[i][j]);
}

}

Output

The adjacency matrix is
0110

0011

0001

1100

Graphs 417

The Path Matrix is
1111

1111

1111

1111



Transitive Closure of a Directed Graph

Definition

For a directed graph G = (V,E), where V is the set of vertices and E is the set of edges, the
transitive closure of G is a graph G* = (V,E*). In G*, for every vertex pair v, w in V there is an

edge (v, w) in E* if and only if there is a valid path from vto w in G.

®>E)>C)>®)>E)

- (

Where and Why is it Needed? | +
. Ag , (B ; EC\ _N\/D\ /g
5 W i o ) ) ?f

(b)

(@) Agraph G and its
(b) transitive closure G*
Finding the transitive closure of a directed graph is an important problem in the following

computational tasks:
e Transitive closure is used to find the reachability analysis of transition networks
representing distributed and parallel systems.|
e Itisused inthe construction of parsing automata in compiler construction.
e Recently, transitive closure computation is being used to evaluate recursive database
queries (because almost all practical recursive queries are transitive in nature).

ALGORITHM
Transitive_Closure(A, t, n)
Step 1: SET i=1, j=1, k=1
Step 2: Repeat Steps 3 and 4 while i<=n
Step 3: Repeat Step 4 while j<=n
Step 4: IF (A[i][j] = 1)

SETH[i][j] =1

ELSE

SET t[i][j] =



INCREMENT j

[END OF LOOP]

INCREMENT i

[END OF LOOP]
Step 5: Repeat Steps 6 to 11 while k<=n
Step 6: Repeat Steps 7 to 1 while i<=n
Step 7: Repeat Steps 8 and 9 while j<=n
Step 8: SET t[i,j] = t[i][i] V (t[il[K] tIKI[1)
Step 9: INCREMENT j

[END OF LOOP]
Step 10 : INCREMENT i

[END OF LOOP]
Step 11: INCREMENT k

[END OF LOOP]
Step 12: END



	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
	Course Objectives:
	Course Outcomes:
	UNIT I
	UNIT II
	UNIT III
	UNIT IV
	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA (1)
	UNIT V
	Text Books:
	Reference Books:
	e-Resources:
	Primitive and Non-primitive Data Structures:
	Linear and Non-linear Structures:

	limitations:
	Advantage of using ADTs
	Structure of an Algorithm:

	Example 1: Sum of the elements in an Array
	Example 1: Sum of three numbers
	Example 2: Sum of Array values
	What to Analyze in an algorithm:
	Example:
	F(n)=n if n<=1
	Algorithm:
	Categories of Sorting:
	Example 1:
	Algorithm: (1)
	SELECTION SORT(ARR, N)
	Algorithm for finding minimum element in the list.
	Example 1:
	Time Complexity:
	Example 1: (1)
	BUBBLE SORT(ARR, N)
	Time Complexity: (1)
	Example:
	Implementation Recursive Merge Sort:
	MergeSort Algoritm:
	Two- Way Merge Sort:

	Unit – III
	QUEUE:
	Operations performed on Queue:


	Using Arrays:
	Example: Enqueue()
	TYPES OF QUEUES:
	CIRCULAR QUEUEs:
	Queue is not full:
	Queue is full:
	Let's understand the enqueue and dequeue operation through the diagrammatic representation.

	DEQUE:
	Array Representation of a Priority Queue:
	Insertion:
	Deletion:

	Multiple Queues:-
	Example:


	Stack:-
	Algorithm for PUSH operation:
	Algorithm for POP operation
	Algorithm for PEEK operation

	Reversing list:
	Factorial Calculation:
	Evaluation of Expressions:-
	Example:      x = a / b – c + d * e – a * c
	Conversion of INFIX to POSTFIX:
	DEFINATION:
	FIGURE 5.1
	FIGURE 5.2

	2. REPRESENTATION OF GRAPHS
	ADJACENCY MATRIX REPRESENTATION
	FIGURE 5.3  Adjacency Matrix Entry
	Figure 5.4 shows some graphs and their corresponding adjacency matrices.
	FIGURE 5.5 Directed graph with its adjacency matrix
	FIGURE 5.6 Path Matrix Entry

	ADJACENCY LINKED LIST REPRESEENTATION
	FIGURE 5.7 Graph G and its adjacency list
	PROGRAMMING EXAMPLE
	Output

	3.GRAPH TRAVERSALS
	1. Breadth-First Search Algorithm
	ALGORITHM
	FIGURE 5.9 Graph G And Its Adjacnecy List
	SOLUTION:
	Space complexity:
	Time Complexity:
	Completeness:
	Optimality:

	Applications of Breadth-First Search Algorithm
	Programming Example
	Output
	2. Depth First Algorithm
	Algorithm
	FIGURE 5.10 Graph G And Its Adjacency List
	Solution:
	Features of Depth-First Search Algorithm Space complexity:
	Time complexity:
	Completeness:
	Applications of Depth-First Search Algorithm

	Programming Example:
	Output

	APPLICATIONS
	FIGURE 5.11 Unweighted Graph And Its Spanning Trees
	FIGURE 5.12 Weighted Graph And Its Spanning Trees.

	1. PRIM’S ALGORITHM
	ALGORITHM
	FIGURE 5.13

	2. KRUSKAL’S ALGORITHM
	ALGORITHM
	FIGURE 5.14
	PROGRAMMING EXAMPLE:
	Output

	Dijkstra’s Algorithm
	ALGORITHM
	EXAMPLE:
	FIGURE 5.14

	Warshall’s Algorithm
	Path Matrix Entry
	Pk[i][j] = Pk–1[i][j] V (Pk–1[i][k] ^ Pk–1[k][j])

	ALGORITHM
	EXAMPLE:
	GRAPH G AND ITS PATH MATRIX
	Output

	Transitive Closure of a Directed Graph
	Definition
	(b) transitive closure G*
	ALGORITHM



